Research article

On sequential fractional Caputo $ (p, q) $-integrodifference equations via three-point fractional Riemann-Liouville $ (p, q) $-difference boundary condition

  • Received: 09 September 2021 Accepted: 14 October 2021 Published: 15 October 2021
  • MSC : 39A10, 39A13, 39A70

  • In this paper, we aim to study the problem of a sequential fractional Caputo $ (p, q) $-integrodifference equation with three-point fractional Riemann-Liouville $ (p, q) $-difference boundary condition. We use some properties of $ (p, q) $-integral in this study and employ Banach fixed point theorems and Schauder's fixed point theorems to prove existence results of this problem.

    Citation: Jarunee Soontharanon, Thanin Sitthiwirattham. On sequential fractional Caputo $ (p, q) $-integrodifference equations via three-point fractional Riemann-Liouville $ (p, q) $-difference boundary condition[J]. AIMS Mathematics, 2022, 7(1): 704-722. doi: 10.3934/math.2022044

    Related Papers:

  • In this paper, we aim to study the problem of a sequential fractional Caputo $ (p, q) $-integrodifference equation with three-point fractional Riemann-Liouville $ (p, q) $-difference boundary condition. We use some properties of $ (p, q) $-integral in this study and employ Banach fixed point theorems and Schauder's fixed point theorems to prove existence results of this problem.



    加载中


    [1] F. H. Jackson, On $q$-difference equations, Am. J. Math., 32 (1910), 305–314.
    [2] F. H. Jackson, On $q$-difference integrals, Q. J. Pure. Appl. Math., 41 (1910), 193–203.
    [3] R. D. Carmichael, The general theory of linear $q$-difference equations, Am. J. Math., 34 (1912), 147–168. doi: 10.2307/2369887. doi: 10.2307/2369887
    [4] T. E. Mason, On properties of the solutions of linear $q$-difference equations with entire function coefficients, Am. J. Math., 37 (1915), 439–444. doi: 10.2307/2370216. doi: 10.2307/2370216
    [5] W. J. Trjitzinsky, Analytic theory of linear $q$-differece equations, Acta Math., 62 (1933), 167–226. doi: 10.1007/BF02547785. doi: 10.1007/BF02547785
    [6] V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002. doi: 10.2307/3647765.
    [7] T. Ernst, A new notation for $q$-calculus and a new $q$-Taylor formula, Department of Mathematics, Uppsala University, 1999.
    [8] R. Floreanini, L. Vinet, $q$-gamma and $q$-beta functions in quantum algebra representation theory, J. Comput. Appl. Math., 68 (1996), 57–68. doi: 10.1016/0377-0427(95)00253-7. doi: 10.1016/0377-0427(95)00253-7
    [9] K. N. Ilinski, G. V. Kalinin, A. S. Stepanenko, $q$-functional field theory for particles with exotic statistics, Phys. Lett. A, 232 (1997), 399–408. doi: 10.1016/S0375-9601(97)00402-7. doi: 10.1016/S0375-9601(97)00402-7
    [10] R. J. Finkelstein, $q$-field theory, Lett. Math. Phys., 34 (1995), 169–176. doi: 10.1007/BF00739095. doi: 10.1007/BF00739095
    [11] R. J. Finkelstein, The $q$-Coulomb problem, J. Math. Phys., 37 (1996), 2628–2636. doi: 10.1063/1.531532. doi: 10.1063/1.531532
    [12] J. Feigenbaum, P. G. Freund, A $q$-deformation of the Coulomb problem, J. Math. Phys., 37 (1996), 1602–1616. doi: 10.1063/1.531471. doi: 10.1063/1.531471
    [13] R. J. Finkelstein, $q$-Gravity, Lett. Math. Phys., 38 (1996), 53–62. doi: 10.1007/BF00398298. doi: 10.1007/BF00398298
    [14] L. P. Marinova, P. P. Raychev, J. Maruani, Molecular backbending in AgH and its description in terms of $q$-algebras, Mol. Phys., 82 (1994), 1115–1129. doi: 10.1080/00268979400100794. doi: 10.1080/00268979400100794
    [15] R. Chakrabarti, R. Jagannathan, A $(p, q)$-oscillator realization of two-parameter quantum algebras, J. Phys. A: Math. Gen., 24 (1991), 5683–5701. doi: 10.1088/0305-4470/24/13/002. doi: 10.1088/0305-4470/24/13/002
    [16] V. Sahai, S. Yadav, Representations of two parameter quantum algebras and $(p, q)$-special functions, J. Math. Anal. Appl., 335 (2007), 268–279. doi: 10.1016/j.jmaa.2007.01.072. doi: 10.1016/j.jmaa.2007.01.072
    [17] I. Burban, Two-parameter deformation of the oscillator algebra and $(p, q)$-analog of two-dimensional conformal field theory, J. Nonlinear Math. Phy., 2 (1995), 384–391. doi: 10.2991/jnmp.1995.2.3-4.18. doi: 10.2991/jnmp.1995.2.3-4.18
    [18] P. N. Sadjang, On the fundamental theorem of $(p, q)$-calculus and some $(p, q)$-Taylor formulas, Results Math., 73 (2018). doi: 10.1007/s00025-018-0783-z. doi: 10.1007/s00025-018-0783-z
    [19] M. Mursaleen, K. J. Ansari, A. Khan, On $(p, q)$-analogue of Bernstein operators, Appl. Math. Comput., 266 (2015), 874–882. doi: 10.1016/j.amc.2015.04.090. doi: 10.1016/j.amc.2015.04.090
    [20] A. Khan, V. Sharma, Statistical approximation by $(p, q)$-analogue of Bernstein-Stancu operators, Azerbaijan J. Math., 8 (2018), 100–121.
    [21] K. Khan, D. K. Lobiyal, Bezier curves based on Lupas $(p, q)$-analogue of Bernstein functions in CAGD, J. Comput. Appl. Math., 317 (2017), 458–477. doi: 10.1016/j.cam.2016.12.016. doi: 10.1016/j.cam.2016.12.016
    [22] G. V. Milovanovic, V. Gupta, N. Malik, $(p, q)$-Beta functions and applications in approximation, Bol. Soc. Mat. Mex., 24 (2018), 219–237. doi: 10.1007/s40590-016-0139-1. doi: 10.1007/s40590-016-0139-1
    [23] W. T. Cheng, W. H. Zhang, Q. B. Cai, $(p, q)$-gamma operators which preserve $x^2$, J. Inequal. Appl., 2019 (2019), 108. doi: 10.1186/s13660-019-2053-3. doi: 10.1186/s13660-019-2053-3
    [24] M. Nasiruzzaman, A. Mukheimer, M. Mursaleen, Some Opial-type integral inequalities via $(p, q)$-calculus, J. Inequal. Appl., 2019 (2019), 295. doi: 10.1186/s13660-019-2247-8. doi: 10.1186/s13660-019-2247-8
    [25] P. Jain, C. Basu, V. Panwar, On the $(p, q)$-Melin transform and its applications, Acta Math. Sci., 41 (2021), 1719–1732. doi:10.1007/s10473-021-0519-0. doi: 10.1007/s10473-021-0519-0
    [26] A. Aral, E. Deniz, H. Erbay, The Picard and Gauss-Weierstrass singular integral in $(p, q)$-calculus, B. Malays. Math. Sci. So., 43 (2020), 1569–1583. doi: 10.1007/s40840-019-00759-z. doi: 10.1007/s40840-019-00759-z
    [27] N. Kamsrisuk, C. Promsakon, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for $(p, q)$-difference equations, Differ. Equat. Appl., 10 (2018), 183–195. doi: 10.7153/dea-2018-10-11. doi: 10.7153/dea-2018-10-11
    [28] C. Promsakon, N. Kamsrisuk, S. K. Ntouyas, J. Tariboon, On the second-order quantum $(p, q)$-difference equations with separated boundary conditions, Adv. Math. Phys., 2018, Article ID 9089865, 9 pages. doi: 10.1155/2018/9089865.
    [29] T. Nuntigrangjana, S. Putjuso, S. K. Ntouyas, J. Tariboon, Impulsive quantum $(p, q)$-difference equations, Adv. Differ. Equ., 2020 (2020), 98. doi: 10.1186/s13662-020-02555-7. doi: 10.1186/s13662-020-02555-7
    [30] R. P. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Proc. Cambridge. Philos. Soc., 66 (1969), 365–370. doi: 10.1017/S0305004100045060. doi: 10.1017/S0305004100045060
    [31] W. A. Al-Salam, Some fractional $q$-integrals and $q$-derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135–140. doi: 10.1017/S0013091500011469. doi: 10.1017/S0013091500011469
    [32] J. B. Díaz, T. J. Osler, Differences of fractional order, Math. Comput., 28 (1974), 185–202. doi: 10.1090/S0025-5718-1974-0346352-5. doi: 10.1090/S0025-5718-1974-0346352-5
    [33] T. Brikshavana, T. Sitthiwirattham, On fractional Hahn calculus, Adv. Differ. Equ., 2017 (2017), 354. doi: 10.1186/s13662-017-1412-y. doi: 10.1186/s13662-017-1412-y
    [34] N. Patanarapeelert, T. Sitthiwirattham, On fractional symmetric Hahn calculus, Mathematics, 7 (2019), 873. doi: 10.3390/math7100873. doi: 10.3390/math7100873
    [35] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, USA, 1999.
    [36] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
    [37] J. Sabatier, O. P. Agrawal, J. A. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007.
    [38] D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific, Boston, 2012.
    [39] M. Tariq, H. Ahmad, S. K. Sahoo, The Hermite-Hadamard type inequality and its estimations via generalized convex functions of Raina type, Math. Model. Num. Simu. Appl., 1 (2021), 32–43. doi: 10.53391/mmnsa.2021.01.004. doi: 10.53391/mmnsa.2021.01.004
    [40] A. Keten, M. Yavuz, D. Baleanu, Nonlocal Cauchy problem via a fractional operator involving power kernel in Banach spaces, Fractal Fract., 3 (2019), 27. doi: 10.3390/fractalfract3020027. doi: 10.3390/fractalfract3020027
    [41] Z. Hammouch, M. Yavuz, N. Özdemir, Numerical solutions and synchronization of a variable-order fractional chaotic system, Math. Model. Num. Simu. Appl., 1 (2021), 11–23. doi: 10.53391/mmnsa.2021.01.002. doi: 10.53391/mmnsa.2021.01.002
    [42] J. Soontharanon, T. Sitthiwirattham, On fractional $(p, q)$-calculus, Adv. Differ. Equ., 2020 (2020), 35. doi: 10.1186/s13662-020-2512-7. doi: 10.1186/s13662-020-2512-7
    [43] N. Pheak, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, Fractional $(p, q)$-calculus on finite intervals and some integral inequalities, Symmetry, 13 (2021), 504. doi: 10.3390/sym13030504. doi: 10.3390/sym13030504
    [44] N. Pheak, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, Praveen Agarwal, Some trapezoid and midpoint type inequalities via fractional $(p, q)$-calculus, Adv. Differ. Equ., 2021 (2021), 333. doi: 10.1186/s13662-021-03487-6. doi: 10.1186/s13662-021-03487-6
    [45] J. Soontharanon, T. Sitthiwirattham, Existence results of nonlocal Robin boundary value problems for fractional $(p, q)$-integrodifference equations, Adv. Differ. Equ., 2020 (2020), 342. doi: 10.1186/s13662-020-02806-7. doi: 10.1186/s13662-020-02806-7
    [46] Z. Qin, S. Sun, Positive solutions for fractional $(p, q)$-difference boundary value problems, J. Appl. Math. Comput., 2021. doi: 10.1007/s12190-021-01630-w. doi: 10.1007/s12190-021-01630-w
    [47] Z. Qin, S. Sun, On a nonlinear fractional $(p, q)$-difference Schr$\ddot{o}$dinger equation, J. Appl. Math. Comput., 2021. doi: 10.1007/s12190-021-01586-x. doi: 10.1007/s12190-021-01586-x
    [48] D. H. Griffel, Applied Functional Analysis, Ellis Horwood Publishers, Chichester, 1981.
    [49] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cone, Academic Press, Orlando, 1988.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2195) PDF downloads(83) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog