Research article Special Issues

Note on subdirect sums of $ \{i_0\} $-Nekrasov matrices

  • Received: 28 July 2021 Accepted: 23 September 2021 Published: 14 October 2021
  • MSC : 15A06, 15A42, 15A60

  • The concept of $ k $-subdirect sums of matrices, as a generalization of the usual sum and the direct sum, plays an important role in scientific computing. In this paper, we introduce a new subclass of $ S $-Nekrasov matrices, called $ \{i_0\} $-Nekrasov matrices, and some sufficient conditions are given which guarantee that the $ k $-subdirect sum $ A\bigoplus_k B $ is an $ \{i_0\} $-Nekrasov matrix, where $ A $ is an $ \{i_0\} $-Nekrasov matrix and $ B $ is a Nekrasov matrix. Numerical examples are reported to illustrate the conditions presented.

    Citation: Jing Xia. Note on subdirect sums of $ \{i_0\} $-Nekrasov matrices[J]. AIMS Mathematics, 2022, 7(1): 617-631. doi: 10.3934/math.2022039

    Related Papers:

  • The concept of $ k $-subdirect sums of matrices, as a generalization of the usual sum and the direct sum, plays an important role in scientific computing. In this paper, we introduce a new subclass of $ S $-Nekrasov matrices, called $ \{i_0\} $-Nekrasov matrices, and some sufficient conditions are given which guarantee that the $ k $-subdirect sum $ A\bigoplus_k B $ is an $ \{i_0\} $-Nekrasov matrix, where $ A $ is an $ \{i_0\} $-Nekrasov matrix and $ B $ is a Nekrasov matrix. Numerical examples are reported to illustrate the conditions presented.



    加载中


    [1] S. M. Fallat, C. R. Johnson, Subdirect sums and positivity classes of matrices, Linear Algebra Appl., 288 (1999), 149–173. doi: 10.1016/S0024-3795(98)10194-5. doi: 10.1016/S0024-3795(98)10194-5
    [2] R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge University Press, 1990.
    [3] J. H. Drew, C. R. Johnson, The completely positive and doubly nonnegative completion problems, Linear Multilinear A., 44 (1998), 85–92. doi: 10.1080/03081089808818550. doi: 10.1080/03081089808818550
    [4] C. R. Johnson, R. L. Smith, The completion problem for $M$-matrices and inverse $M$-matrices, Linear Algebra Appl., 241 (1996), 655–667. doi: 10.1016/0024-3795(95)00429-7. doi: 10.1016/0024-3795(95)00429-7
    [5] L. Gao, Q. L. Liu, C. Q. Li, Y. T. Li, On $\{P_1, P_2\}$-Nekrasov Matrices, Bull. Malays. Math. Sci. Soc., 44 (2021), 2971–2999. doi: 10.1007/s40840-021-01094-y. doi: 10.1007/s40840-021-01094-y
    [6] A. Frommer, D. B. Szyld, Weighted max norms, splittings, and overlapping additive Schwarz iterations, Numer. Math., 83 (1999), 259–278. doi: 10.1007/s002110050449. doi: 10.1007/s002110050449
    [7] B. Smith, P. Bjorstad, W. Gropp, Domain decomposition: Parallel multilevel methods for elliptic partial differential equations, Cambridge University Press, 2004.
    [8] R. Bru, F. Pedroche, D. B. Szyld, Additive Schwarz iterations for Markov chains, SIAM J. Matrix Anal Appl., 27 (2005), 445–458. doi: 10.1137/040616541. doi: 10.1137/040616541
    [9] Y. Saad, Iterative methods for sparse linear systems, 2003.
    [10] Q. Liu, J. He, L. Gao, C. Q. Li, Note on subdirect sums of SDD($p$) matrices, Linear Multilinear A., 2020, doi: 10.1080/03081087.2020.1807457. doi: 10.1080/03081087.2020.1807457
    [11] M. Fiedler, V. Pták, Generalized norms of matrices and the location of the spectrum, Czech. Math. J., 12 (1962), 558–571.
    [12] R. Bru, F. Pedroche, D. B. Szyld, Subdirect sums of $S$-strictly diagonally dominant matrices, Electron. J. Linear Al., 15 (2006), 201–209. doi: 10.13001/1081-3810.1230. doi: 10.13001/1081-3810.1230
    [13] Y. Zhu, T. Z. Huang, Subdirect sum of doubly diagonally dominant matrices, Electron. J. Linear Al., 16 (2007), 171–182. doi: 10.13001/1081-3810.1192. doi: 10.13001/1081-3810.1192
    [14] R. Bru, L. Cvetković, V. Kostić, F. Pedroche, Sums of $\Sigma$-strictly diagonally dominant matrices, Linear Multilinear A., 58 (2010), 75–78. doi: 10.1080/03081080802379725. doi: 10.1080/03081080802379725
    [15] R. Bru, L. Cvetković, V. Kostić, F. Pedroche, Characterization of $\alpha_1$ and $\alpha_2$-matrices, Cent. Eur. J. Math., 8 (2010), 32–40. doi: 10.2478/s11533-009-0068-6. doi: 10.2478/s11533-009-0068-6
    [16] C. Q. Li, Q. L. Liu, L. Gao, Y. T. Li, Subdirect sums of Nekrasov matrices, Linear Multilinear A., 64 (2016), 208–218. doi: 10.1080/03081087.2015.1032198. doi: 10.1080/03081087.2015.1032198
    [17] C. Q. Li, R. D. Ma, Q. L. Liu, Y. T. Li, Subdirect sums of weakly chained diagonally dominant matrices, Linear Multilinear A., 65 (2017), 1220–1231. doi: 10.1080/03081087.2016.1233933. doi: 10.1080/03081087.2016.1233933
    [18] L. Gao, H. Huang, C. Q. Li, Subdirect sums of $QN$-matrices, Linear Multilinear A., 68 (2020), 1605–1623. doi: 10.1080/03081087.2018.1551323. doi: 10.1080/03081087.2018.1551323
    [19] Y. Zhu, T. Z. Huang, J. Liu, Subdirect sums of $H$-matrices, Int. J. Nonlinear Sci., 8 (2009), 50–58.
    [20] C. Mendes Araújo, J. R. Torregrosa, Some results on $B$-matrices and doubly $B$-matrices, Linear Algebra Appl., 459 (2014), 101–120. doi: 10.1016/j.laa.2014.06.048. doi: 10.1016/j.laa.2014.06.048
    [21] C. Mendes Araújo, S. Mendes-Gonçalves, On a class of nonsingular matrices containing $B$-matrices, Linear Algebra Appl., 578 (2019), 356–369. doi: 10.1016/j.laa.2019.05.015. doi: 10.1016/j.laa.2019.05.015
    [22] R. Bru, F. Pedroche, D. B. Szyld, Subdirect sums of nonsingular $M$-matrices and of their inverse, Electron. J. Linear Al., 13 (2005), 162–174. doi: 10.13001/1081-3810.1159. doi: 10.13001/1081-3810.1159
    [23] L. Cvetković, V. Kostić, S. Rauški, A new subclass of $H$-matrices, Appl. Math. Comput., 208 (2009), 206–210. doi: 10.1016/j.amc.2008.11.037. doi: 10.1016/j.amc.2008.11.037
    [24] L. Cvetković, V. Kostić, K. Doroslovačkic, Max-norm bounds for the inverse of $S$-Nekrasov matrices, Appl. Math. Comput., 218 (2012), 9498–9503. doi: 10.1016/j.amc.2012.03.040. doi: 10.1016/j.amc.2012.03.040
    [25] M. García-Esnaola, J. M. Peña, Error bounds for linear complementarity problems of Nekrasov matrices, Numer. Algorithms, 67 (2014), 655–667. doi: 10.1007/s11075-013-9815-7. doi: 10.1007/s11075-013-9815-7
    [26] P. F. Dai, J. Li, J. Bai, L. Dong, New error bounds for linear complementarity problems of $S$-Nekrasov matrices and $B$-$S$-Nekrasov matrices, Comp. Appl. Math., 38 (2019), 61. doi: 10.1007/s40314-019-0818-4. doi: 10.1007/s40314-019-0818-4
    [27] L. Gao, Y. Q. Wang, C. Q. Li, Y. T. Li, Error bounds for the linear complementarity problem of $S$-Nekrasov matrices and $B$-$S$-Nekrasov matrices, J. Comput. Appl. Math., 336 (2018), 147–159. doi: 10.1016/j.cam.2017.12.032. doi: 10.1016/j.cam.2017.12.032
    [28] J. Zhang, C. Bu, Nekrasov tensors and nonsingular $H$-tensors, Comp. Appl. Math., 37 (2018), 4917–4930. doi: 10.1007/s40314-018-0607-5. doi: 10.1007/s40314-018-0607-5
    [29] C. Y. Zhang, New advances in research on $H$-matrices, Science Press, 2017.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1941) PDF downloads(56) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog