Research article

A D-N alternating algorithm for exterior 3-D problem with ellipsoidal artificial boundary

  • Received: 26 July 2021 Accepted: 02 October 2021 Published: 13 October 2021
  • MSC : 65N38, 65N55

  • In this study, based on a general ellipsoidal artificial boundary, we present a Dirichlet-Neumann (D-N) alternating algorithm for exterior three dimensional (3-D) Poisson problem. By using the series concerning the ellipsoidal harmonic functions, the exact artificial boundary condition is derived. The convergence analysis and the error estimation are carried out for the proposed algorithm. Finally, some numerical examples are given to show the effectiveness of this method.

    Citation: Xuqiong Luo. A D-N alternating algorithm for exterior 3-D problem with ellipsoidal artificial boundary[J]. AIMS Mathematics, 2022, 7(1): 455-466. doi: 10.3934/math.2022029

    Related Papers:

  • In this study, based on a general ellipsoidal artificial boundary, we present a Dirichlet-Neumann (D-N) alternating algorithm for exterior three dimensional (3-D) Poisson problem. By using the series concerning the ellipsoidal harmonic functions, the exact artificial boundary condition is derived. The convergence analysis and the error estimation are carried out for the proposed algorithm. Finally, some numerical examples are given to show the effectiveness of this method.



    加载中


    [1] K. Bathe, E. L. Wilson, Numerical methods in finite element analysis, Englewood Cliffs: Prentice-Hall, 1976. doi: 10.1016/0898-1221(77)90079-7.
    [2] D. J. Evans, Numerical solution of exterior problems by the peripheral block over-relaxation method, IMA J. Appl. Math., 19 (1977), 399–405. doi: 10.1093/imamat/19.4.399. doi: 10.1093/imamat/19.4.399
    [3] C. A. Brebbia, Boundary element method in engineering, Berlin: Spring-Verlag, 1982.
    [4] D. Givoli, Numerical methods for problems in infinite domains, Amsterdam: Elsevier, 1992.
    [5] J. L. Zhu, Boundary element analysis for elliptic boundary value problems, Beijing: Science Press, 1992.
    [6] K. Feng, Finite element method and natural boundary reduction, In: Proceedings of the international congress of mathematicians, 1983, 1439–1453.
    [7] K. Feng, D. H. Yu, Canonical integral equations of elliptic boundary value problems and their numerical solutions, In: Proceedings of China-France symposium on the finite element method, Beijing: Science Press, 1983,211–252.
    [8] J. B. Keller, D. Givoli, Exact non-reflecting boundary conditions, J. Comput. Phys., 82 (1989), 172–192. doi: 10.1016/0021-9991(89)90041-7. doi: 10.1016/0021-9991(89)90041-7
    [9] H. D. Han, X. N. Wu, Approximation of infinite boundary condition and its application to finite element method, J. Comput. Math., 3 (1985), 179–192.
    [10] H. D. Han, X. N. Wu, The approximation of the exact boundary conditions at an artificial boundary for linear elastic equations and its applications, Math. Comput., 59 (1992), 21–37. doi: 10.1090/S0025-5718-1992-1134732-0. doi: 10.1090/S0025-5718-1992-1134732-0
    [11] D. Givoli, J. B. Keller, A finite element method for large domains, Comput. Methods Appl. M., 76 (1989), 41–66. doi: 10.1016/0045-7825(89)90140-0. doi: 10.1016/0045-7825(89)90140-0
    [12] M. J. Grote, J. B. Keller, On nonreflecting boundary conditions, J. Comput. Phys., 122 (1995), 231–243. doi: 10.1006/jcph.1995.1210. doi: 10.1006/jcph.1995.1210
    [13] D. Givoli, J. B. Keller, Special finite elements for use with high-order boundary conditions, Comput. Methods Appl. M., 119 (1994), 119–213. doi: 10.1016/0045-7825(94)90089-2. doi: 10.1016/0045-7825(94)90089-2
    [14] F. Brezzi, C. Johnson, On the coupling of boundary integral and finite element methods, Calcolo, 16 (1979), 189–201. doi: 10.1007/BF02575926. doi: 10.1007/BF02575926
    [15] C. Johnson, J. C. Nedelec, On the coupling of boundary integral and finite element methods, Math. Comp., 35 (1980), 1063–1079. doi: 10.1090/S0025-5718-1980-0583487-9. doi: 10.1090/S0025-5718-1980-0583487-9
    [16] D. H. Yu, Discretization of non-overlapping domain decomposition method for unbounded domains and its convergence (Chinese), Math. Numer. Sinica, 18 (1996), 328–336. doi: 10.12286/jssx.1996.3.328. doi: 10.12286/jssx.1996.3.328
    [17] D. H. Yu, Natural boundary integral mehtod and its applications, Dordrecht: Klumer Academic Publishers, 2002.
    [18] J. M. Wu, D. H. Yu, The natural integral equations of 3-D harmonic problems and their numerical solution (Chinese), Math. Numer. Sinica, 20 (1998), 419–430. doi: 10.12286/jssx.1998.4.419. doi: 10.12286/jssx.1998.4.419
    [19] J. M. Wu, D. H. Yu, The overlapping domain decomposition method for harmonic equation over exterior three-dimensional domain, J. Comput. Math., 18 (2000), 83–94.
    [20] H. Y. Huang, D. H. Yu, Natural boundary element method for three dimensional exterior harmonic problem with an inner prolate spheriod boundary, J. Comput. Math., 24 (2006), 193–208.
    [21] H. Y. Huang, D. J. Liu, D. H. Yu, Solution of exterior problem using ellipsoidal artificial boundary, J. Comput. Appl. Math., 231 (2009), 434–446. doi: 10.1016/j.cam.2009.03.009. doi: 10.1016/j.cam.2009.03.009
    [22] X. Q. Luo, Q. K. Du, H. Y. Huang, T. S. He, A Schwarz alternating algorithm for a three-dimensional exterior harmonic problem with prolate spheroid boundary, Comput. Math. Appl., 65 (2013), 1129–1139. doi: 10.1016/j.camwa.2013.02.004. doi: 10.1016/j.camwa.2013.02.004
    [23] X. Q. Luo, Q. K. Du, L. B. Liu, A D-N alternating algorithm for exterior 3-D poisson problem with prolate spheroid boundary, Appl. Math. Comput., 269 (2015), 252–264. doi: 10.1016/j.amc.2015.07.063. doi: 10.1016/j.amc.2015.07.063
    [24] C. S. Chen, A. Karageorghis, L. Amuzu, Kansa RBF collocation method with auxiliary boundary centres for high order BVPs, J. Comput. Appl. Math., 398 (2021), 113680. doi: 10.1016/j.cam.2021.113680. doi: 10.1016/j.cam.2021.113680
    [25] R. Cavoretto, A. De Rossi, An adaptive LOOCV-based refinement scheme for RBF collocation methods over irregular domains, Appl. Math. Lett., 103 (2020), 106178. doi: 10.1016/j.aml.2019.106178. doi: 10.1016/j.aml.2019.106178
    [26] R. Cavoretto, A. De Rossi, A two-stage adaptive scheme based on RBF collocation for solving elliptic PDEs, Comput. Math. Appl., 79 (2020), 3206–3222. doi: 10.1016/j.camwa.2020.01.018. doi: 10.1016/j.camwa.2020.01.018
    [27] E. W. Hobson, The theory of spherical and ellipsoidal harmonics (Bateman Manuscript Project), London: McGraw-Hill, 1955. doi: 10.2307/3607762.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2110) PDF downloads(52) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog