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1. Introduction

In this paper, we consider the following exterior Dirichlet problem:
−∆u = f (x), in Ω,
u = g, on Γ0,
u→ 0 as |x| → ∞,

(1.1)

where Ω0 ⊂ R
3 be a bounded Lipschitz domain, and Γ0 = ∂Ω0 be its boundary, Ω = R3\Ω0. ∆ is the

Laplace operator. Assume that the given function g satisfies g ∈ H
1
2 (Γ0) and f (x) ∈ L2(Ω) has the

compact supported set.
It is well known that partial differential equation boundary value problems with bounded or

unbounded domains widely arise in many fields of scientific and engineering. For partial differential
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equation boundary value problems with bounded domain, the commonly finite element method
(FEM) [1] and finite difference method (FDM) [2] were used to solve these problems. Meanwhile,
for unbounded domains partial differential equation, boundary element method (BEM) [3–5], natural
boundary element method (NBEM) [6, 7], artificial boundary method [8–13], and the coupling of
NBEM (or BEM) and FEM [14, 15] were all efficient numerical methods. Both the methods on
bounded domains and the methods on unbounded domains, they all have their own advantages and
disadvantages.

It should be pointed out that the coupling method of FEM and BEM proposed by Feng and Yu [6,7]
is fully compatible with the FEM. It is easy to be implemented on the computer and can be coupled with
FEM naturally and directly by natural boundary reduction (NBR). The coupling of FEM and NBEM
was first applied to solve two dimensional (2-D) unbounded domain of the elliptic problems [16, 17].
A circle [11] or an ellipse [12, 16] was usually selected as the artificial boundary for exterior 2-D
problems. For exterior 3-D problems, a sphere was usually selected as the artificial boundary [12,
18, 19]. For some special shapes, such as cigar-shaped, rotating ellipsoid boundary, some special
artificial boundary methods [20–23] are given. Since it leads to a smaller computational domain and
does not increase the computational cost of the stiffness matrix from boundary reduction, it shows that
these methods are very efficient. In the last decade, mesh-less methods which involve the radial basis
functions (RBF) are also used to solve higher dimensions exterior problems. The motivations is that
such functions or kernels are easily applicable and implementable in higher order partial differential
equations, independent from geometry, etc [24–26].

In this paper, based on FEM and NBEM, a Dirichlet-Neumann (D-N) alternating algorithm has
been devised to solve exterior 3-D Poisson problem in an infinite region with an ellipsoidal boundary.
The standard procedure of the method is described as follows: Firstly, let Ω be an unbounded domain
with boundary Γ0. Then we introduce an artificial boundary Γ1, where Γ0 is surrounded by Γ1. We
denote the bounded domain between Γ0 and Γ1 as Ω1 , and Ω2 is the unbounded domain with boundary
Γ1. Secondly, in Ω2, we use the NBEM to solve this problem. Furthermore, we use FEM to solve
this problem in Ω1. Finally, on the interface between Ω1 and Ω2, a sequence of boundary conditions is
generated iteratively until convergence to the solution of the original problem.

The outline of the paper is as follows: In Section 2, the original domain Ω is divide two non-
overlapping regions by an ellipsoidal artificial boundary Γ1 and the corresponding D-N alternating
algorithm of the problem is constructed. In Section 3 and Section 4, the convergence analysis of the
algorithm and the error estimates were given, respectively. In Section 5, two numerical examples
are carried out to demonstrate the effectiveness and accuracy of this method. Finally, we state the
conclusions in Section 6.

2. A D-N alternating algorithm based on NBR

Let Γ1 = {(x, y, z) | x2

a2 +
y2

b2 + z2

c2 = 1, a > b > c > 0} denote an ellipsoid. Then an unbounded domain
outside the boundary Γ1 is Ω2.

Let Γ0 be a surface inside the Γ1, and dist(Γ1,Γ0) > 0. Then for problem (1.1), Ω is divided into two
non-overlapping subdomains Ω1 and Ω2.

Let Ω1 be the bounded domain among Γ0 and Γ1, and Ω2 be the unbounded domain outside Γ1. Then
the original problem (1.1) is decomposed into two subproblems over subdomains Ω1 and Ω2.
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Firstly, based on ellipsoidal system of coordinates (λ1, λ2, λ3) which is defined in [27] and Γ1

coincides with the ellipsoid λ1 = a, the Cartesian coordinates (x, y, z) related to the ellipsoidal
coordinates (λ1, λ2, λ3) can be expressed as follows:

x2 =
λ2

1λ
2
2λ

2
3

h2k2 ,

y2 =
(λ2

1−h2)(λ2
2−h2)(h2−λ2

3)
h2(k2−h2) ,

z2 =
(λ2

1−k2)(k2−λ2
2)(k2−λ2

3)
k2(k2−h2) ,

(2.1)

where h2 = a2 − b2 and k2 = a2 − c2.
Secondly, the Laplace’s equation ∆u = 0 in the following problem:

−∆u = 0, in Ω2,

u = u1(x), on Γ1,

u(x)→ 0 as |x| → ∞
(2.2)

can be expressed in terms by the ellipsoidal coordinates (λ1, λ2, λ3). In the orthogonal set of coordinates
(λ1, λ2, λ3), the Laplace’s equation is expressed as in [27]

(λ2
2 − λ

2
3)

√
(λ2

1 − h2)(λ2
1 − k2)

∂

∂λ1
(
√

(λ2
1 − h2)(λ2

1 − k2)
∂u
∂λ1

)

+(λ2
1 − λ

2
3)

√
(λ2

2 − h2)(k2 − λ2
1)

∂

∂λ2
(
√

(λ2
2 − h2)(k2 − λ2

1)
∂u
∂λ2

)

+(λ2
1 − λ

2
2)

√
(h2 − λ2

3)(k2 − λ2
1)

∂

∂λ3
(
√

(h2 − λ2
3)(k2 − λ2

1)
∂u
∂λ2

) = 0.

In exterior Ω2, the normal solution of the Laplace’s equation [27] is

u(λ1, λ2, λ3) = E1(λ1)E2(λ2)E3(λ3).

As we know, the functions E1–E3 must satisfy Lamé’s equation

(λ2
i − h2)(λ2

i − k2)
d2E(λi)

dλ2
i

+ λi(2λ2
i − h2 − k2)

dE(λi)
dλi

+ (p − qλ2
i )E(λi) = 0,

where p and q are called the separation parameters.
Then, the Laplace equation’s analytic solution over the domain Ω2 is

u(λ1, λ2, λ3) = Pu1 �
+∞∑
n=0

2n+1∑
p=1

U p
n√
γ

p
n

F p
n (λ1)

F p
n (a)

Ep
n (λ2)Ep

n (λ3), λ1 ≥ a, (2.3)

where

U p
n =

∫
Γ1

u(a, λ2, λ3)
Ep

n (λ2)Ep
n (λ3)√

(a2 − λ2
2)(a2 − λ2

3)

ds√
γ

p
n

, γp
n =

∫
Γ1

(
Ep

n (λ2)Ep
n (λ3)

)2√
(a2 − λ2

2)(a2 − λ2
3)

ds,

and ds is the surface element about the Cartesian coordinates on Γ1. Let Ep
n (λ) denote n order Lamé

functions of the first kind with the eigenvalue p. As suggested by the Lamé function of the first kind,
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there exist the Lamé functions of the second kind. The Lamé’s functions of the second kind are then
defined by

F p
n (λ1) = (2n + 1)Ep

n (λ1)
∫ ∞

λ1

ds

(Ep
n (s))2

√
(s2 − k2)(s2 − h2)

such that F p
n (λ1)→ 0 when λ1 → ∞ and they have the same eigenvalue p.

The expression (2.3) is called the Poisson integral formula. From (2.3) and the Lemma 1 of
Huang [21], an expression of the normal derivative ∂u

∂n can be obtained. If we set λ1 = a, the exact
artificial boundary condition is

∂u
∂n

∣∣∣∣
Γ1

= Ku1 � −bc
+∞∑
n=0

2n+1∑
p=1

U p
n√
γ

p
n

dF p
n (a)

dλ1

F p
n (a)

Ep
n (λ2)Ep

n (λ3)√
(a2 − λ2

2)(a2 − λ2
3)
. (2.4)

Here, the expression (2.4) is also called the natural integral equation. So we can obtain the solution
of problem (2.2) directly from (2.3).

Based on (2.3) and (2.4), we construct a D-N alternating algorithm as follows:

Step 1. Put k = 0, and pick an initial value λ0 ∈ H
1
2 (Γ1).

Step 2. In exterior domain Ω2, solve a Dirichlet boundary value problem:{
−∆uk

2 = f (x), in Ω2,

uk
2 = λk, on Γ1.

(2.5)

Step 3. In interior domain Ω1, solve a mixed boundary value problem:
−∆uk

1 = f (x), in Ω1,
∂uk

1
∂n = −

∂uk
2

∂n , on Γ1,

uk
1 = g(x), on Γ0.

(2.6)

Step 4. On Γ1, update the boundary value by

λk+1 = θkuk
1 + (1 − θk)λk, 0 < θk < 1.

Step 5. Put k = k + 1, go to Step 2.

For the D-N alternating algorithm, we need know the relaxation factor θk, which is called a suitable
real number. The algorithm’s main work is on the Step 3, where a mixed boundary value problem
in bounded domain Ω1 is solved by standard finite element method. In order to solve the Dirichlet
problem with exterior domain Ω2 in the Step 2, we can use the normal derivative of the solution of the
problem (2.5) on Γ1. Similarly, ∂uk

2
∂n can be found from λk by using the natural integral equation (2.4).
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3. Analysis of convergence

Let
Vg(Ω1) =

{
v | v ∈ H1(Ω1), v|Γ0 = g(x)

}
, V0(Ω1) =

{
v | v ∈ H1(Ω1), v|Γ0 = 0

}
.

Then the following coupled variational problem is equivalent to the problem (1.1). Find u ∈ Vg(Ω1) such that,
D1(u, v) + D̂2(u, v) =

∫
Ω1

f vdxdydz, ∀ v ∈ V0(Ω1), (3.1)

where D1(u, v) =
∫

Ω1
∇u · ∇vdxdydz. From [20], we know

D̂2(u, v)=

∫
Ω2

∇u · ∇vdxdydz=

∫
Γ1

v
∂u
∂n

ds = −bc
∞∑

n=0

2n+1∑
p=1

dF p
n (a)
dλ

F p
n (a)

U p
n V p

n , (3.2)

where

V p
n =

∫
Γ1

v(a, λ2, λ3)
Ep

n (λ2)Ep
n (λ3)√

(a2 − λ2
2)(a2 − λ2

3)

ds√
γ

p
n

.

Let S h(Ω1) ⊂ V0(Ω1) be an linear finite element space of V0(Ω1), and subdivide Ω1 into hexahedrons
or tetrahedrons. Then, the approximation variational problem of (3.1) can be written as: Find uh ∈ S h(Ω1) such that,

D1(uh, vh) + D̂2(uh, vh) =
∫

Ω1
f vhdxdydz, ∀ vh ∈ S h(Ω1). (3.3)

From the problem (3.3), we can obtain the algebraic equations as follow:( A11 A12

A21 A22 + Kh

)( U
V

)
=

( b1

b2

)
, (3.4)

where U and V are vectors whose components are function values at interior nodes of Ω1 and nodes
on Γ1, respectively.

From FEM in Ω1, we can get the matrix

A =

( A11 A12

A21 A22

)
,

which is a stiffness matrix. From the NBEM on Γ1, we can obtain the Kh. The expression (3.4) can
also be rewritten as follow: ( A11 A12

A21 A22

)( U
V

)
=

( b1

b2 − KhV

)
. (3.5)

Then, the iterative algorithm can be given as follow:( A11 A12

A21 A22

)( Uk

Vk

)
=

( b1

b2 − KhΛk

)
(3.6)
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with
Λk+1 = θkVk + (1 − θk)Λk, k = 0, 1, · · · . (3.7)

Since A is a symmetric and positive definite matrix, we know that A−1
11 is nonsingular. From the

expression (3.4), we know

(A22 − A21A−1
11 A12 + Kh)V = b2 − A21A−1

11 b1. (3.8)

Let
b2 = b2 − A21A−1

11 b1, S (1)
h = A22 − A21A−1

11 A12, S h = S (1)
h + Kh,

then the expression (3.8) can also be rewritten S h · V = b2, where S h is the discrete analogue of
the Steklov-Poincaré operator on Γ1. Therefore, preconditioned Richardson iteration is constructed as
follow:

S (1)
h (Λk+1 − Λk) = θk(b2 − S hΛk). (3.9)

Theorem 3.1. [23] The discrete D-N alternating algorithms (3.6), (3.7) and the iteration (3.9)
are equivalent.

Theorem 3.2. [23] The condition number of the iterative matrix (S (1)
h )−1S h of the discrete D-N

alternating algorithm is independent of the finite element mesh size h.

Theorem 3.3. [23] If 0 < min θk ≤ max θk < 1, then the D-N alternating methods (3.6) and (3.7) are
convergent, and the convergence rate is independent of the finite element mesh size h.

4. Error estimates

Let Vh(Ω1) be a piecewise linear finite element space and Nh be the node set in Ω1 ∪ Ω0 ∪ Γ1. We
denote

Vh
g (Ω1) =

{
v | v ∈ Vh, v(a) = g(a), a ∈ Nh ∩ Γ0

}
,

Vh
0 (Ω1) =

{
v | v ∈ Vh, v(a) = 0, a ∈ Nh ∩ Γ0

}
.

The discrete variational problems of the variational problems (3.1) and (3.3) are the followings
respectively:  Find u ∈ Vh

g (Ω1) such that,
D1(u, v) + D̂2(u, v) =

∫
Ω1

f vdxdydz, ∀ v ∈ V0(Ω1), (4.1)

and  Find uN
h ∈ VN

h (Ω1) such that,
D1(uh, vh) + D̂2(uh, vh) =

∫
Ω1

f vhdxdydz, ∀ vh ∈ S h(Ω1). (4.2)

Similarly, the following error estimation can be obtained from [21].

Theorem 4.1. Suppose that u ∈ H2(Ω1)∩Vg(Ω1) and uNh ∈ Vg(Ω1) are the solutions of problems (3.1)
and (4.2) respectively, and u|Γ1 ∈ H

3
2 (Γ1). Then there exists a positive constant C independent of h and

N such that

‖u − uNh‖H1(Ω1) ≤ C
{
h‖u‖H2(Ω1) +

1
N + 2

( a(a2
1 + k2)

a1(a2 + k2)

)N+2
‖u‖

H
3
2 (Γ1)

}
.
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Theorem 4.2. Suppose that u ∈ H2(Ω1)∩Vg(Ω1) and uNh ∈ Vg(Ω1) are the solutions of problems (3.1)
and (4.2) respectively, and u|Γ1 ∈ H

3
2 (Γ1). Then there exists a positive constant C independent of h and

N such that

‖u − uNh‖L2(Ω1) ≤ C
{
h‖u‖H2(Ω1) +

1
N + 2

( a(a2
1 + k2)

a1(a2 + k2)

)N+2
‖u‖

H
3
2 (Γ1)

}
,

where α is related to the smoothness convexity of the domain Ω1 and the differentiability of the solution
of boundary value problem.

5. Numerical experiments

In this section, two numerical examples are used to show the effectiveness of the D-N alternating
algorithm, where the exact solutions of all two examples are known. Let

e(k) = sup
Pi∈Ω1

∣∣∣∣u(Pi) − u(k)
1h (Pi)

∣∣∣∣
be the maximal error of all node functions on Ω1,

eh(k) = sup
Pi∈Ω1

∣∣∣∣u(k+1)
1h (Pi) − u(k)

1h (Pi)
∣∣∣∣

be the maximum node-error of the adjacent two-steps on nodes and

qh(k) =
eh(k − 1)

eh(k)
be the approximation of the convergence rate. We use three meshes: Mesh I, Mesh II and Mesh III to
express our computations. Mesh I is a coarse mesh by a lot of small tetrahedrons. Mesh II is refined
from Mesh I in such a way what every tetrahedron of Mesh I is divided into eight “equal” tetrahedron.
Mesh III is the refined mesh of Mesh II in the same way.

Example 5.1. Let f (x) = 0, Γ0 = {(x, y, z) : x2

6.25 +
y2

4.0 + z2

2.25 = 1}, the ellipsoidal artificial boundary
Γ1 = {(x, y, z) : x2

6.25 +
y2

4.0 + z2

2.25 = a2, a > 1} and the exact solution of problem (1.1) is

u(x) =
x

x2 + y2 + z2 .

Taking g(x) = u(x)|Γ0 . The correspondent results are shown in Table 1, Table 2 and Figure 1.

Example 5.2. Let f (x) = 0, Ω = {(x, y, z) : |x| ≥ 2.5, |y| ≥ 2.0, |z| ≥ 1.5} and the ellipsoidal artificial
boundary Γ1 = {(x, y, z) : x2

6.25 +
y2

4.0 + z2

2.25 = a2, a >
√

3}. The exact solution of problem (1.1) be

u(x) =
x

x2 + y2 + z2 .

Taking g(x) = u(x)|Γ0 . The correspondent results is shown by Table 3, Table 4 and Figure 2.

In the numerical experiments, we use the Γ1 = {(x, y, z) : x2

6.25 +
y2

4.0 + z2

2.25 = 4, } as the numerical
example 1 and example 2. The radius a = 2 just represents the shape of the Γ1. The larger a is, the
larger domain of Γ1 and Γ0 enclosed will be. So the more computation time will be spent. On the
contrary, The smaller a is, the smaller area of Γ1 and Γ0 enclosed will be. So The less computation
time is spent for the computer.
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Table 1. The relationship between meshes and convergence rate (N = 20, θk = 0.5 and
a = 2.0).

Mesh
Number of iteration and corresponding values

0 1 2 3 4 5

I
e 1.537E-1 3.762E-2 2.512E-2 2.320E-2 2.290E-2 2.285E-2
eh − 1.161E-1 1.250E-2 1.920E-3 2.958E-4 4.627E-5
qh − − 8.129 6.512 6.490 6.393

II
e 1.074E-1 1.836E-2 7.971E-3 6.397E-3 6.157E-3 6.120E-3
eh − 8.904E-2 1.039E-2 1.574E-3 2.399E-4 3.670E-5
qh − − 8.571 6.602 6.561 6.537

III
e 6.107E-2 8.287E-3 2.262E-3 1.354E-3 1.215E-3 1.194E-3
eh − 5.278E-2 6.025E-3 9.075E-4 1.388E-4 2.126E-5
qh − − 8.760 6.639 6.536 6.529

Table 2. The relationship between θ and convergence rate.

θ
Number of iteration and corresponding values

0 1 2 3 4 5

0.2
e 1.074E-1 4.863E-2 3.748E-2 3.466E-2 3.393E-2 3.374E-2
eh − 5.877E-2 1.115E-2 2.821E-3 7.289E-4 1.864E-4
qh − − 5.270 3.953 3.870 3.910

0.3
e 1.074E-1 3.965E-2 2.891E-2 2.639E-2 2.580E-2 2.566E-2
eh − 6.775E-2 1.074E-2 2.515E-3 5.936E-4 1.414E-4
qh − − 6.308 4.270 4.237 4.197

0.5
e 1.074E-1 1.836E-2 7.971E-3 6.397E-3 6.157E-3 6.120E-3
eh − 8.904E-2 1.039E-2 1.574E-3 2.399E-4 3.670E-5
qh − − 8.571 6.602 6.561 6.537

0.6
e 1.074E-1 3.038E-2 1.959E-2 1.765E-2 1.730E-2 1.723E-2
eh − 7.702E-2 1.079E-2 1.936E-3 3.545E-4 6.529E-4
qh − − 7.136 5.573 5.461 5.430

0.7
e 1.074E-1 4.529E-2 3.504E-2 3.255E-2 3.194E-2 3.179E-2
eh − 6.211E-2 1.025E-2 2.495E-3 6.112E-4 1.520E-4
qh − − 6.058 4.109 4.082 4.020
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Figure 1. The relationship between maximal errors in relative maximum norm and iteration
k about different mesh for Example 5.1.

Table 3. The relationship between meshes and convergence rate (N = 20, θk = 0.5 and
a = 2.0).

Mesh
Number of iteration and corresponding values

0 1 2 3 4 5

I
e 1.182E-1 2.590E-2 1.241E-2 1.049E-2 1.021E-2 1.017E-2
eh − 9.230E-2 1.349E-2 1.927E-3 2.768E-4 4.015E-5
qh − − 6.842 7.001 6.962 6.895

II
e 5.626E-2 9.528E-3 3.131E-3 2.231E-3 2.103E-3 2.085E-3
eh − 4.673E-2 6.397E-3 9.004E-4 1.279E-4 1.846E-5
qh − − 7.305 7.105 7.041 6.927

III
e 1.072E-2 1.875E-3 7.583E-4 6.087E-4 5.884E-4 5.856E-4
eh − 8.845E-3 1.117E-3 1.496E-4 2.028E-5 2.836E-6
qh − − 7.918 7.468 7.375 7.150
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Table 4. The relationship between θ and convergence rate.

θ
Number of iteration and corresponding values

0 1 2 3 4 5

0.2
e 5.626E-2 3.429E-2 2.817E-2 2.647E-2 2.599E-2 2.586E-2
eh − 2.197E-2 6.125E-3 1.698E-3 4.751E-4 1.316E-4
qh − − 3.587 3.608 3.574 3.610

0.3
e 5.626E-2 2.530E-2 1.931E-2 1.816E-2 1.794E-2 1.780E-2
eh − 3.096E-2 5.994E-3 1.151E-3 2.232E-4 4.345E-5
qh − − 5.165 5.208 5.157 5.137

0.5
e 5.626E-2 9.528E-3 3.131E-3 2.231E-3 2.103E-3 2.085E-3
eh − 4.673E-2 6.397E-3 9.004E-4 1.279E-4 1.846E-5
qh − − 7.305 7.105 7.041 6.927

0.6
e 5.626E-2 1.227E-2 5.248E-3 4.108E-3 3.921E-3 3.890E-3
eh − 4.399E-2 7.022E-3 1.140E-3 1.871E-4 3.061E-5
qh − − 6.265 6.159 6.093 6.112

0.7
e 5.626E-2 2.881E-2 2.316E-2 2.201E-2 2.177E-2 2.172E-2
eh − 2.745E-2 5.646E-3 1.146E-3 2.372E-4 4.880E-
qh − − 4.862 4.926 4.832 4.861

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

Iteration k

R
e

la
tio

n
 E

rr
o

r 
M

a
xi

m
u

m
 N

o
rm

 

 
Mesh I
Mesh II
Mesh III

Figure 2. The relationship between maximal errors in relative maximum norm and iteration
k about different mesh for Example 5.2.
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6. Conclusions

In this paper, we have proposed a D-N alternating algorithm based on the NBR for exterior 3-D
Poisson problem with ellipsoidal artificial boundary. The maximal error of the approximate solution
decreases with the mesh refining from the numerical results Table 1 and Table 3. When we fixed
convergence factor θk, the convergence rate can be basically considered to maintain invariable in a
same mesh. Table 2 and Table 4 have demonstrated that the convergence of the algorithm is the best as
θk approaches to 0.5. Figure 1 and Figure 2 have shown that maximal errors in relative maximum norm
will quickly dwindle until approach to stable states. The numerical results agree with the theoretic
results.
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