Research article

Statistical inference in functional semiparametric spatial autoregressive model

  • Received: 26 January 2021 Accepted: 15 July 2021 Published: 28 July 2021
  • MSC : 62G05, 62J05, 62M30

  • Semiparametric spatial autoregressive model has drawn great attention since it allows mutual dependence in spatial form and nonlinear effects of covariates. However, with development of scientific technology, there exist functional covariates with high dimensions and frequencies containing rich information. Based on high-dimensional covariates, we propose an interesting and novel functional semiparametric spatial autoregressive model. We use B-spline basis function to approximate the slope function and nonparametric function and propose generalized method of moments to estimate parameters. Under certain regularity conditions, the asymptotic properties of the proposed estimators are obtained. The estimators are computationally convenient with closed-form expression. For slope function and nonparametric function estimators, we propose the residual-based approach to derive its pointwise confidence interval. Simulation studies show that the proposed method performs well.

    Citation: Gaosheng Liu, Yang Bai. Statistical inference in functional semiparametric spatial autoregressive model[J]. AIMS Mathematics, 2021, 6(10): 10890-10906. doi: 10.3934/math.2021633

    Related Papers:

  • Semiparametric spatial autoregressive model has drawn great attention since it allows mutual dependence in spatial form and nonlinear effects of covariates. However, with development of scientific technology, there exist functional covariates with high dimensions and frequencies containing rich information. Based on high-dimensional covariates, we propose an interesting and novel functional semiparametric spatial autoregressive model. We use B-spline basis function to approximate the slope function and nonparametric function and propose generalized method of moments to estimate parameters. Under certain regularity conditions, the asymptotic properties of the proposed estimators are obtained. The estimators are computationally convenient with closed-form expression. For slope function and nonparametric function estimators, we propose the residual-based approach to derive its pointwise confidence interval. Simulation studies show that the proposed method performs well.



    加载中


    [1] L. Anselin, Spatial econometrics: methods and models, The Netherlands: Kluwer Academic Publishers, 1988.
    [2] L. Anselin, A. K. Bera, Spatial dependence in linear regression models with an introduction to spatial econometrics, In: Handbook of Applied Economic Statistics, New York: Marcel Dekker, 1998.
    [3] G. Aneiros-P$\acute{e}$rez, P. Vieu, Semi-functional partial linear regression, Stat. Probabil. Lett., 76 (2006), 1102–1110. doi: 10.1016/j.spl.2005.12.007
    [4] C. de Boor, A practical guide to splines, New York: Springer-Verlag, 2001.
    [5] H. Cardot, F. Ferraty, P. Sarda, Spline estimators for the functional linear model, Stat. Sinica, 13 (2003), 571–592.
    [6] T. Cai, P. Hall, Prediction in functional linear regression, Ann. Statist., 34 (2006), 2159–2179.
    [7] T. Cai, M. Yuan, Minimax and adaptive prediction for functional linear regression, J. Am. Stat. Assoc., 107 (2012), 1201–1216. doi: 10.1080/01621459.2012.716337
    [8] C. Crambes, A. Kneip, P. Sarda, Smoothing splines estimators for functional linear regression, Ann. Statist., 37 (2009), 35–72.
    [9] X. Dai, S. Li, M. Tian, Quantile regression for partially linear varying coefficient spatial autoregressive models, 2016, arXiv: 1608.01739.
    [10] J. Du, X. Sun, R. Cao, Z. Zhang, Statistical inference for partially linear additive spatial autoregressive models, Spat. Stat., 25 (2018), 52–67. doi: 10.1016/j.spasta.2018.04.008
    [11] A. Delaigle, P. Hall, Methodology and theory for patial least squares applied to functional data, Ann. Statist., 40 (2012), 322–352.
    [12] T. Huang, S. Gilbert, H. Wang, S. Wang, Spatial functional linear model and its estimation method, 2018, arXiv: 1811.00314.
    [13] Y. Hu, S. Wu, S. Feng, J. Jin, Estimation in partial functional linear spatial autoregressive model, Mathematics, 8 (2020), 1–12.
    [14] P. Hall, J. L. Horowitz, Methodology and convergence rates for functional linear regression, Ann. Statist., 35 (2007), 70–91.
    [15] J. Huang, Efficient estimation of the partly linear additive Cox model, Ann. Statist., 27 (1999), 1536–1563.
    [16] J. Z. Huang, Local asymptotics for polynomial spline regression, Ann. Statist., 31 (2003), 1600–1635.
    [17] H. H. Kelejian, I. R. Prucha, A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances, J. Real Estate Finan. Econ., 17 (1998), 99–121. doi: 10.1023/A:1007707430416
    [18] H. H. Kelejian, I. R. Prucha, A generalized moments estimator for the autoregressive parameter in a spatial model, International Economic Review, 40 (1999), 509–533. doi: 10.1111/1468-2354.00027
    [19] J. P. LeSage, The theory and practice of spatial econometrics, Ohio: University of Toledo, 1999.
    [20] L. F. Lee, J. H. Yu, Estimation of spatial autoregressive panel data models with fixed effects, J. Econometrics, 154 (2010), 165–185. doi: 10.1016/j.jeconom.2009.08.001
    [21] J. LeSage, R. K. Pace, Introduction to spatial econometrics, Boca Raton: Chapman and Hall/CRC, 2009.
    [22] L. F. Lee, GMM and 2SLS estimation of mixed regressive, spatial autoregressive models, J. Econometrics, 137 (2007), 489–514. doi: 10.1016/j.jeconom.2005.10.004
    [23] L. F. Lee, Best spatial two-stage least squares estimators for a spatial autoregressive model with autoregressive disturbances, Econometric Rev., 22 (2003), 307–335. doi: 10.1081/ETC-120025891
    [24] W. Pineda-Rios, R. Giraldo, E. Porcu, Functional SAR models: With application to spatial econometrics, Spat. Stat., 29 (2019), 145–159. doi: 10.1016/j.spasta.2018.12.002
    [25] X. Qu, L. F. Lee, A spatial autoregressive model with a nonlinear transformation of the dependent variable, J. Econometrics, 184 (2015), 209–232. doi: 10.1016/j.jeconom.2014.08.008
    [26] P. T. Reiss, J. Goldsmith, H. L. Shang, R. T. Ogden, Methods for scalar-on-function regression, Int. Stat. Rev., 85 (2017), 228–249. doi: 10.1111/insr.12163
    [27] J. O. Ramsay, C. J. Dalzell, Some tools for functinal data analysis (with discussion), J. R. Stat. Soc. B, 53 (1991), 539–572.
    [28] H. Shin, Partial functional linear regression, J. Stat. Plan. Infer., 139 (2009), 3405–3418. doi: 10.1016/j.jspi.2009.03.001
    [29] C. J. Stone, Optimal rates of convergence for nonparametric estimators, Ann. Statist., 8 (1980), 1348–1360.
    [30] C. J. Stone, Additive regression and other nonparametric models, Ann. Statist., 13 (1985), 689–705.
    [31] L. J. Su, Semiparametric GMM estimation of spatial autoregressive models, J. Econometrics, 167 (2012), 543–560. doi: 10.1016/j.jeconom.2011.09.034
    [32] L. J. Su, S. N. Jin, Profile quasi-maximum likelihood estimation of partially linear spatial autoregressive models, J. Econometrics, 157 (2010), 18–33. doi: 10.1016/j.jeconom.2009.10.033
    [33] Y. Sun, H. Yan, W. Zhang, Z. Lu, A semiparametric spatial dynamic model, Ann. Statist., 42 (2014), 700–727.
    [34] L. Schumaker, Spline functions: basic theory, Cambridge University Press, 2007.
    [35] H. Tadao, Semiparametric spatial autoregressive models with endogenous regressors: with an application to crime data, J. Bus. Econ. Stat., 36 (2018), 160–172. doi: 10.1080/07350015.2016.1146145
    [36] H. Wei, Y. Sun, Heteroskedasticity-robust semi-parametric GMM estimation of a spatial model with space-varying coefficients, Spatial Economic Analysis, 12 (2017), 113–128. doi: 10.1080/17421772.2017.1250940
    [37] L. Wang, X. Liu, H. Liang, R. Carroll, Estimation and variable selection for generalized additive partial linear models, Ann. Statist., 39 (2011), 1827–1851.
    [38] P. Yu, J. Du, Z. Zhang, Single-index partial functional linear regression model, Stat. Papers, 11 (2018), 1–17.
    [39] Y. Q. Zhang, D. M. Shen, Eseimation of semi-parametric varying-coefficient spatial panel data models with random effects, J. Statist. Plann. Infer., 159 (2015), 64–80. doi: 10.1016/j.jspi.2014.11.001
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2579) PDF downloads(156) Cited by(2)

Article outline

Figures and Tables

Figures(1)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog