Theory article

Uniqueness of difference polynomials

  • Received: 16 March 2021 Accepted: 12 July 2021 Published: 20 July 2021
  • MSC : 30D30

  • Let $ f(z) $ be a transcendental meromorphic function of finite order and $ c\in\Bbb{C} $ be a nonzero constant. For any $ n\in\Bbb{N}^{+} $, suppose that $ P(z, f) $ is a difference polynomial in $ f(z) $ such as $ P(z, f) = a_{n}f(z+nc)+a_{n-1}f(z+(n-1)c)+\cdots+a_{1}f(z+c)+a_{0}f(z) $, where $ a_{k} (k = 0, 1, 2, \cdots, n) $ are not all zero complex numbers. In this paper, the authors investigate the uniqueness problems of $ P(z, f) $.

    Citation: Xiaomei Zhang, Xiang Chen. Uniqueness of difference polynomials[J]. AIMS Mathematics, 2021, 6(10): 10485-10494. doi: 10.3934/math.2021608

    Related Papers:

  • Let $ f(z) $ be a transcendental meromorphic function of finite order and $ c\in\Bbb{C} $ be a nonzero constant. For any $ n\in\Bbb{N}^{+} $, suppose that $ P(z, f) $ is a difference polynomial in $ f(z) $ such as $ P(z, f) = a_{n}f(z+nc)+a_{n-1}f(z+(n-1)c)+\cdots+a_{1}f(z+c)+a_{0}f(z) $, where $ a_{k} (k = 0, 1, 2, \cdots, n) $ are not all zero complex numbers. In this paper, the authors investigate the uniqueness problems of $ P(z, f) $.



    加载中


    [1] W. K. Hayman, Meromorphic functions, Oxford: Oxford Mathematical Monographs Clarendon Press, 1964.
    [2] L. Yang, Value distribution theory, Berlin: Springer-Verlag, 1993.
    [3] J. H. Zheng, Value distribution of meromorphic functions, Beijing: Tsinghua University Press, 2011.
    [4] W. Bergweiler, J. K. Langley, Zeros of differences of meromorphic functions, Math. Proc. Cambridge Philos. Soc., 142 (2007), 133–147. doi: 10.1017/S0305004106009777
    [5] Y. M. Chiang, S. J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J., 16 (2008), 105–129. doi: 10.1007/s11139-007-9101-1
    [6] Y. M. Chiang, S. J. Feng, On the growth of logarithmic difference, difference equations and logarithmic derivatives of meromorphic functions, J. Trans. Am. Math. Soc., 361 (2009), 3767–3791. doi: 10.1090/S0002-9947-09-04663-7
    [7] R. G. Halburd, R. J. Korhonen, Nevanlinna theory for the difference operator, 2005. Available from: https://arXiv.org/abs/math/0506011.
    [8] R. G. Halburd, R. J. Korhonen, Meromorphic solutions of difference equations, integrability and the discrete Painlevé equations, J. Phys. A: Math. Theor., 40 (2007), 1–38. doi: 10.1088/1751-8113/40/1/001
    [9] R. G. Halburd, R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 314 (2006), 477–487. doi: 10.1016/j.jmaa.2005.04.010
    [10] B. M. Deng, M. L. Fang, D. Liu, Uniqueness of meromorphic functions concerning shared functions with their difference, Bull. Korean Math. Soc., 56 (2019), 1151–1524.
    [11] Z. B. Huang, R. R. Zhang, Uniqueness of the differences of meromorphic functions, Anal. Math., 44 (2018), 461–473. doi: 10.1007/s10476-018-0306-x
    [12] X. M. Li, C. Y. Kang, H. X. Yi, Uniqueness theorems of entire functions sharing a nonzero complex number with their difference operators, Arch. Math., 96 (2011), 577–587. doi: 10.1007/s00013-011-0228-3
    [13] Z. B. Huang, Value distribution and uniqueness on q-differences of meromorphic functions, Bull. Korean Math. Soc., 50 (2013), 1157–1171. doi: 10.4134/BKMS.2013.50.4.1157
    [14] Z. X. Chen, On growth, zeros and poles of meromorphic solutions of linear and nonlinear difference equations, Sci. China Math., 54 (2011), 2123–2133. doi: 10.1007/s11425-011-4265-y
    [15] Z. X. Chen, On the difference counterpart of Brück's conjecture, Acta Math. Sci., 34 (2014), 653–659. doi: 10.1016/S0252-9602(14)60037-0
    [16] Z. X. Chen, H. X. Yi, On sharing values of meromorphic functions and their differences, Results Math., 63 (2013), 557–565. doi: 10.1007/s00025-011-0217-7
    [17] I. Laine, C. C. Yang, Clunie theorems for difference and q-difference polynomials, J. London Math. Soc., 76 (2007), 556–566. doi: 10.1112/jlms/jdm073
    [18] K. Liu, H. Z. Cao, T. B. Cao, Entire solutions of Fermat type differential differenceequations, Arch. Math., 99 (2012), 147–155. doi: 10.1007/s00013-012-0408-9
    [19] Z. X. Liu, Q. C. Zhang, Difference uniqueness theorems on meromorphic functions in several variables, Turk. J. Math., 42 (2018), 2481–2505. doi: 10.3906/mat-1712-52
    [20] Z. J. Wu, Value distribution for difference operator of meromorphic functions with maximal deficiency sum, J. Inequalities Appl., 530 (2013), 1–9.
    [21] H. Y. Xu, T. B. Cao, B. X. Liu, The growth of solutions of systems of complex q-shift difference equations, Adv. Differ. Equations, 2012 (2012), 216. doi: 10.1186/1687-1847-2012-216
    [22] J. F. Xu, X. B, Zhang, The zeros of q-shift difference polynomials of meromorphic functions, Adv. Differ. Equations, 2012 (2012), 200. doi: 10.1186/1687-1847-2012-200
    [23] R. R. Zhang, Z. X. Chen, Fixed points of meromorphic functions and of their difference, divided differences and shifts, Acta Math. Sin. English Ser., 32 (2016), 1189–1202. doi: 10.1007/s10114-016-4286-0
    [24] C. C. Yang, H. X. Yi, Uniqueness theory of meromoprhic functions, Dordrecht: Kluwer Academic Publishers, 2003.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2200) PDF downloads(140) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog