Research article Special Issues

Infinitely many solutions for a class of fractional Robin problems with variable exponents

  • Received: 08 April 2021 Accepted: 02 June 2021 Published: 22 June 2021
  • MSC : 35D30, 35J20, 35J60, 35P15, 35P30, 35R11, 46E35

  • In this paper, we are concerned with a class of fractional Robin problems with variable exponents. Their main feature is that the associated Euler equation is driven by the fractional $ p(\cdot)- $Laplacian operator with variable coefficient while the boundary condition is of Robin type. This paper is a continuation of the recent work established by A. Bahrouni, V. Radulescu and P. Winkert [5].

    Citation: Ramzi Alsaedi. Infinitely many solutions for a class of fractional Robin problems with variable exponents[J]. AIMS Mathematics, 2021, 6(9): 9277-9289. doi: 10.3934/math.2021539

    Related Papers:

  • In this paper, we are concerned with a class of fractional Robin problems with variable exponents. Their main feature is that the associated Euler equation is driven by the fractional $ p(\cdot)- $Laplacian operator with variable coefficient while the boundary condition is of Robin type. This paper is a continuation of the recent work established by A. Bahrouni, V. Radulescu and P. Winkert [5].



    加载中


    [1] A. Bahrouni, Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity, Commun. Pure Appl. Anal., 16 (2017), 243–252. doi: 10.3934/cpaa.2017011
    [2] A. Bahrouni, V. Rǎdulescu, On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent, Discrete Contin. Dyn. S, 11 (2018), 379–389.
    [3] A. Bahrouni, Comparaison and sub-supersolution principles for the fractional $p(x)$-Laplacian, J. Math. Anal. Appl., 458 (2018), 1363–1372. doi: 10.1016/j.jmaa.2017.10.025
    [4] A. Bahrouni, K. Ho, Remarks on eigenvalue problems for fractional $p(\cdot)$-Laplacian, Asymptotic Anal., 123 (2021), 139–156. doi: 10.3233/ASY-201628
    [5] A. Bahrouni, V. Radulescu, P. Winkert, Robin fractional problems with symmetric variable growth, J. Math. Phys., 61 (2020), 101503. doi: 10.1063/5.0014915
    [6] G. Molica Bisci, V. Rădulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var., 54 (2015), 2985–3008. doi: 10.1007/s00526-015-0891-5
    [7] G. Molica Bisci, V. Rădulescu, R. Servadei, Variational methods for nonlocal fractional problems, Cambridge: Cambridge University Press, 2016.
    [8] R. Biswas, S. Tiwari, Variable order nonlocal Choquard problem with variable exponents, Complex Var. Elliptic, 66 (2021), 853–875. doi: 10.1080/17476933.2020.1751136
    [9] L. Caffarelli, J. M. Roquejoffre, Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151–1179.
    [10] L. Caffarelli, S. Salsa, L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171, (2008), 425–461.
    [11] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245–1260. doi: 10.1080/03605300600987306
    [12] N. T. Chung, H. Q. Toan, On a class of fractional Laplacian problems with variable exponents and indefinite weights, Collect. Math., 71 (2020), 223–237. doi: 10.1007/s13348-019-00254-5
    [13] S. Dipierro, O. Savin, E. Valdinoci, All functions are locally sharmonic up to a small error, J. Eur. Math. Soc., 19 (2017), 957–966. doi: 10.4171/JEMS/684
    [14] S. Dipierro, O. Savin, E. Valdinoci, Boundary behavior of nonlocal minimal surfaces, J. Funct. Anal., 272 (2017), 1791–1851. doi: 10.1016/j.jfa.2016.11.016
    [15] L. Diening, P. Harjulehto, P. Hästö, M. R$\mathring{\text{u}}$žička, Lebesgue and Sobolev spaces with variable exponents, Heidelberg: Springer-Verlag, 2011.
    [16] F. Kamache, R. Guefaifia, S. Boulaaras, Existence of three solutions for perturbed nonlinear fractional p-Laplacian boundary value systems with two control parameters, J. Pseudo-Differ. Oper. Appl., 11 (2020), 1781–1803. doi: 10.1007/s11868-020-00354-y
    [17] X. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. doi: 10.1006/jmaa.2000.7617
    [18] R. Guefaifia, S. Boulaaras, C. Bahri, R. Taha, Infinite existence solutions of fractional systems with Lipschitz nonlinearity, J. Funct. Space., 2020 (2020), 6679101.
    [19] P. Hajek, V. M. Santalucia, J. Vanderwerff, V. Zizler, Biorthogonal systems in Banach spaces, Springer, 2008.
    [20] K. Ho, Y. H. Kim, A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional $p(\cdot)$-Laplacian, Nonlinear Anal., 188 (2019), 179–201. doi: 10.1016/j.na.2019.06.001
    [21] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. doi: 10.1016/j.bulsci.2011.12.004
    [22] U. Kaufmann, J. D. Rossi, R. Vidal, Fractional Sobolev spaces with variable exponents and fractional $p(x)$-Laplacians, Electron. J. Qual. Theo., 76 (2017), 1–10.
    [23] O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czech. Math. J., 41 (1991), 592–618.
    [24] P. Pucci, M. Xiang, B. Zhang, Existence and multiplicity of entire solutions for fractional $p$-Kirchhoff equations, Adv. Nonlinear Anal., 5 (2016), 27–55.
    [25] V. D. Rǎdulescu, D. D. Repovš, Partial differential equations with variable exponents, Boca Raton, FL: CRC Press, 2015.
    [26] R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887–898. doi: 10.1016/j.jmaa.2011.12.032
    [27] R. Servadei, E. Valdinoci, Variational methods for non-local operators of elliptic type, DCDS, 33 (2013), 2105–2137. doi: 10.3934/dcds.2013.33.2105
    [28] J. Simon, Régularité de la solution d'une équation non linéaire dans $\mathbb{R}^N$, In: Lecture Notes in Math. Volume 665, Berlin: Springer, 1978,205–227.
    [29] C. Zhang, X. Zhang, Renormalized solutions for the fractional $p(x)$-Laplacian equation with $L^1$, Nonlinear Anal., 190 (2020), 111610. doi: 10.1016/j.na.2019.111610
    [30] V. Zhikov, Averaging of functionals in the calculus of variations and elasticity, Math. USSR Izv., 29 (1987), 33–66. doi: 10.1070/IM1987v029n01ABEH000958
    [31] W. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343–358. doi: 10.1007/s002290170032
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2438) PDF downloads(107) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog