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1. Introduction

Fractional Sobolev spaces have major applications to various nonlinear problems, including phase
transitions, thin obstacle problem, anomalous diffusion, crystal dislocation, semipermeable membranes
and flame propagation, ultra-relativistic limits of quantum mechanics, minimal surfaces, water waves,
etc. For more details, we refer the readers to Di Nezza, Palatucci and Valdinoci [21]. More recently,
the works of Caffarelli et al. [9–11], led to a large amount of papers involving the fractional diffusion
operator (−∆)s (0 < s < 1). The cited results turn out to be very fruitful in order to recover an
elliptic PDE approach in a nonlocal framework, and they have recently been used very often, see
[1,6,7,16,18,24,26,27]. We mention that there are also a great number of results which do not survive
in the fractional framework, such as the ones mentioned in [13, 14].

On the other hand, the study of PDE’s involving variable exponents has become very attractive in
recent decades, see [15, 17, 19, 23, 25, 30] and the references therein.

It is therefore a natural question to see which results “survive” when the p(x)−Laplacian is replaced
by the fractional p(x)−Laplacian.

As far as we know, the first result about the fractional Sobolev spaces with variable exponent of
the form W s,q(·),p(·,·)(Ω) and the fractional p(x)−Laplacian is obtained by Kaufmann-Rossi-Vidal in
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[22]. In particular it is shown that theses spaces are compactly embedded into variable exponent
Lebesgue spaces. They also study the existence existence of solution for nonlocal problems involving
the fractional p(·, ·)−Laplacian. Bahrouni-Radulescu [2] obtained some further qualitative properties
of the fractional Sobolev spaces and the fractional p(·, ·)−Laplacian. Further developments have been
done by Bahrouni, Ho, Biswas, Chung, Zhang, see [3–5, 8, 12, 20, 29].

The main goal of this paper is to study the existence of infinitely many solutions for fractional
p(·, ·)−Laplacian equation with nonlocal Robin boundary condition. Precisely, we deal with the
following problem

(−∆)s
p(·,·) u + |u|p(x)−2u = a(x)|u|q(x)−2u in Ω,

Ns,p(·,·)u + β(x)|u|p(x)−2u = 0 in RN \Ω,
(1.1)

where Ω ⊂ RN , N > 1, is a bounded domain with Lipschitz boundary, a, q ∈ L∞(Ω), s ∈ (0, 1),
p : R2N → (1,+∞) is a symmetric, continuous function bounded away from 1, p(·) = p(·, ·), β ∈
L∞(RN \Ω) with β ≥ 0 in RN \Ω and (−∆)s

p(·,·) stands for the fractional p(·, ·)−Laplacian which is given
by

(−∆)s
p(·,·) u(x) = p. v.

∫
RN

|u(x) − u(y)|p(x,y)−2(u(x) − u(y))
|x − y|N+sp(x,y) dy for x ∈ Ω. (1.2)

Furthermore, Ns,p(·,·) is defined by

Ns,p(·,·)u(x) =

∫
Ω

|u(x) − u(y)|p(x,y)−2(u(x) − u(y))
|x − y|N+sp(x,y) dy for x ∈ RN \Ω, (1.3)

and denotes the nonlocal normal p(·, ·)-derivative (or p(·, ·)−Neumann boundary condition) and
describes the natural Neumann boundary condition in presence of the fractional p(·, ·)−Laplacian.
We would like to mention that the nonlocal normal derivative was introduced for the first time by
A. Bahrouni, V. Radulescu and P. Winkert in [5]. This paper can be considered as a continuation of this
study. Precisely, using variational methods, we will prove the existence of infinitely many solutions of
Eq (1.1).

Now, we recall some results obtained by U. Kaufmann et al. [22]. Let Ω be a bounded Lipschitz
domain in RN , s ∈ (0, 1), q ∈ C(Ω,R), and p ∈ C(Ω ×Ω,R). Throughout this paper, we assume that

1 < p(x, y) = p(y, x) <
N
s
, ∀ (x, y) ∈ Ω ×Ω (P’)

and
1 < q(x) <

N p(x, x)
N − sp(x, x)

=: p∗s(x), ∀ x ∈ Ω. (Q’)

We define the fractional Sobolev space with variable exponents W s,q(·),p(·,·)(Ω) as

W s,q(·),p(·,·)(Ω) =

{
u ∈ Lq(·)(Ω) : ∃ λ > 0,

∫
Ω×Ω

|u(x) − u(y)|p(x,y)

λp(x,y)|x − y|N+sp(x,y) dxdy < ∞
}
.

Let

[u]s,p(·,·),Ω = inf
{
λ > 0 :

∫
Ω×Ω

|u(x) − u(y)|p(x,y)

λp(x,y)|x − y|N+sp(x,y) dxdy ≤ 1
}
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be the corresponding variable exponent Gagliardo seminorm. For brevity, we denote W s,q(·),p(·,·)(Ω) by
E for a general q ∈ C(Ω,R) satisfying (Q’) and by W s,p(·,·)(Ω) when q(x) = p(x, x) on Ω. We equip E
with the norm

‖u‖E = [u]s,p(·,·),Ω + ‖u‖Lq(·)(Ω).

Then, E becomes a reflexive and separable Banach space.
Now, we are ready to recall a crucial theorem which prove some embedding results was obtained
in [22] for the case q(x) > p(x, x) on Ω and then was refined in [20, 29].

Theorem 1.1. Let Ω ⊂ RN be a bounded Lipschitz domain and let s ∈ (0, 1). Let p ∈ C(Ω ×Ω,R) and
q ∈ C(Ω,R) satisfy (P’) and (Q’) with q(x) ≥ p(x, x) for all x ∈ Ω. Let r ∈ C(Ω,R) satisfy

1 < r(x) < p∗s(x), ∀x ∈ Ω. (R)

Then, there exists a constant C = C(N, s, p, q, r,Ω) such that

‖ f ‖Lr(·)(Ω) ≤ C‖ f ‖E, ∀ f ∈ E.

Thus, E is continuously embedded in Lr(·)(Ω). Moreover, this embedding is compact.

From Theorem 1.1 and using assumptions (P’) and (Q’) with q(x) ≥ p(x, x) for all x ∈ Ω, we can
deduce that spaces E and W s,p(·,·)(Ω) actually coincide. Evidently, E is not suitable for studying the
fractional p(., .)−Laplacian problem with Robin boundary condition and hence, we need to introduce
another space as our solution space.

We suppose the following assumptions:

(A) a ∈ L∞(Ω) and a > 0 in Ω.

(S) s ∈ R with s ∈ (0, 1);

(P) p : R2N → (1,+∞) is a symmetric, continuous function bounded away from 1, that is,

p(x, y) = p(y, x) for all x, y ∈ R2N

with

1 < p− := min
(x,y)∈R2N

p(x, y) ≤ p(x, y) ≤ p+ := max
(x,y)∈R2N

p(x, y).

and sp+ < N;

(β) β ∈ L∞(RN \Ω) and β ≥ 0 in RN \Ω;

Let u : RN → R be a measurable function and let p(x) = p(x, x) for all x ∈ R2N . We set

‖u‖X := [u]s,p(·,·),R2N\(CΩ)2 + ‖u‖Lp(·)(Ω) +
∥∥∥∥β 1

p(·) u
∥∥∥∥

Lp(·)(CΩ)
,

where CΩ = RN \Ω and

X :=
{
u : RN → R measurable : ‖u‖X < ∞

}
.

(X, ‖ · ‖X) is a reflexive and separable Banach space, see [5]. Let us recall the compact embedding
result introduced in [22].
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Proposition 1.2. Assume that (S), (P) and (β) hold. Then, for any r ∈ C(Ω) with 1 < r(x) < p∗s(x) for
all x ∈ Ω, there exists a constant α > 0 such that

‖u‖Lr(·)(Ω) ≤ α‖u‖X for all u ∈ X.

Moreover, this embedding is compact.

Now we give our main result.

Theorem 1.3. Assume that q(x) ∈ (1, p−), for all x ∈ Ω and conditions (A), (S ), (P) and (β) are
fulfilled. Then problem (1.1) has infinitely many solutions.

This paper is organized as follows. In Section 2 we recall some definitions and fundamental
properties of the spaces Lp(·)(Ω) and W1,p(·)(Ω). In Section 3 we give the proof of Theorem 1.3.

2. Variable exponent spaces and preliminary results

In this section, we recall some definition and basic properties concerning the basic function spaces
with variable exponent. We refer to [5, 15, 17, 23, 25, 30] and the references therein.

We start by giving a bounded Lipschitz domain Ω ⊂ RN . Next, we consider the following set

C+(Ω) = {p ∈ C(Ω,R) : p(x) > 1 for all x ∈ Ω}.

For any p ∈ C+(Ω), denote

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x)

and recall the variable exponent Lebesgue space Lp(·)(Ω) as

Lp(·)(Ω) =

{
u : u is measurable real-valued function,

∫
Ω

|u(x)|p(x)dx < ∞
}
,

which is endowed with the following Luxemburg norm

‖u‖Lp(·)(Ω) = inf
{
µ > 0 :

∫
Ω

∣∣∣∣∣u(x)
µ

∣∣∣∣∣p(x)

dx ≤ 1
}
.

It is well known that (Lp(·)(Ω), ‖ · ‖Lp(·)(Ω)) is a separable reflexive Banach space.
The variable exponent Sobolev space W1,p(·)(Ω) is defined by

W1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)

}
with the norm

‖u‖1,p(·) = ‖∇u‖p(·) + ‖u‖p(·).

Let Lq(·)(Ω) be the conjugate space of Lp(·)(Ω), that is, 1/p(x) + 1/q(x) = 1 for all x ∈ Ω. If
u ∈ Lp(·)(Ω) and v ∈ Lq(·)(Ω), then the Hölder-type inequality∣∣∣∣∣∫

Ω

uv dx
∣∣∣∣∣ ≤ (

1
p−

+
1
q−

)
‖u‖p(·)‖v‖q(·)
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is satisfied.

Defining the modular function ρ : Lp(·)(Ω)→ R by

ρ(u) =

∫
Ω

|u|p(x) dx.

Then, we have the following crucial result which will be useful in the sequel.

Proposition 2.1. Assume that u ∈ Lp(·)(Ω). Then:

(i) ‖u‖p(·) < 1 (= 1, > 1) ⇐⇒ ρ(u) < 1 (= 1, 1);

(ii) ‖u‖p(·) > 1 ⇒ ‖u‖p−

p(·) ≤ ρ(u) ≤ ‖u‖p+

p(·);

(iii) ‖u‖p(·) < 1 ⇒ ‖u‖p+

p(·) ≤ ρ(u) ≤ ‖u‖p−

p(·) .

Proposition 2.2. Assume that u, un ∈ Lp(·)(Ω) with n ∈ N. Then the following statements are equivalent:

(i) limn→+∞ ‖un − u‖p(·) = 0;

(ii) limn→+∞ ρ(un − u) = 0;

(iii) un(x)→ u(x) a. e. in Ω and limn→+∞ ρ(un) = ρ(u).

Now, we introduce the variational setting for problem (1.1). We define the functional I : X → R by

I(u) =

∫
R2N\(CΩ)2

|u(x) − u(y)|p(x,y)

2p(x, y)|x − y|N+sp(x,y) dx dy +

∫
Ω

|u|p(x)

p(x)
dx

+

∫
CΩ

β(x)|u|p(x)

p(x)
dx −

∫
Ω

a(x)
q(x)
|u|q(x) dx,

which is well defined and of class C1 on X. Clearly, the weak solutions of our main problem (1.1)
are exactly the critical points of the Euler-Lagrange functional I.

3. Proof of main result

In this section, we investigate the existence of infinitely many solutions for problem (1.1). It is
known that, by [19], there exist (en) ⊂ X and e∗n ⊂ X∗ such that

e∗n (em) = 1 if n = m and e∗n (em) = 0 if n , m.

It follows that
X = span {en, n ≥ 1} and X∗ = span

{
e∗n, n ≥ 1

}
.

For any integer k ≥ 1, denote

Ek = span {ek} , Yk = ⊕k
j=1E j and Zk = ⊕∞j=kE j.

Consider now the functional
Iλ(u) = J(u) − λK(u),
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where

J(u) =

∫
R2N\(CΩ)2

|u(x) − u(y)|p(x,y)

2p(x, y)|x − y|N+sp(x,y) dx dy +

∫
Ω

|u|p(x)

p(x)
dx

+

∫
CΩ

β(x)|u|p(x)v
p(x)

dx

and

K(u) =

∫
Ω

a(x)
|u(x)|q(x)

q(x)
dx.

An important ingredient in the proof of Theorem 1.3 is the following version of the fountain theorem,
see Zou [31].

Theorem 3.1. Suppose that the functional Iλ defined above satisfies the following conditions:
(T1) Iλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2]. Furthermore, Iλ(−u) = Iλ(u) for
all (λ, u) ∈ [1, 2] × X;
(T2) K(u) ≥ 0, K(u)→ ∞ as ‖u‖ → ∞ on any finite dimensional subspace of X;
(T3) there exist ρk > rk > 0 such that

ak(λ) := inf
u∈Zk ,‖u‖=ρk

Iλ(u) ≥ 0 > bk(λ) = max
u∈Yk ,‖u‖=rk

Iλ(u) for λ ∈ [1, 2] ,

dk(λ) = inf
u∈Zk ,‖u‖≤ρk

Iλ(u)→ 0 as k → ∞ uniformly for λ ∈ [1, 2].

Then there exist a sequence of real numbers (λn) converging to 1 and u(λn) ∈ Yn such that
I′λn
|Yn

(
uλn

)
= 0 and

(
Iλn

)
(u (λn)) → ck ∈ [dk(2), bk(1)] as n → ∞. In particular, fixed k ∈ N, if (u(λn))

has a convergent subsequence to uk, then I1 has infinitely many nontrivial critical points (uk) ⊂ X\ {0}
satisfying I1 (uk)→ 0− as k → ∞.

We start with the following auxiliary property.

Lemma 3.2. Suppose that condition (A) is satisfied. Then

βk = sup
u∈Zk ,‖u‖=1

∫
Ω

a(x)
|u(x)|q(x)

q(x)
dx→ 0 as k → +∞.

Proof. It is easy to see that 0 < βk+1 ≤ βk, so that βk → β ≥ 0 as k → +∞. For every k ≥ 0, by

definition of βk, there exists uk ∈ Zk such that ‖uk‖ = 1 and
∫

Ω

a(x)
|uk|

q(x)

q(x)
dx >

βk

2
. Since uk ∈ Zk, it

follows that uk ⇀ 0 in X. From Proposition 1.2, we deduce that
∫

Ω

a(x)
|uk|

q(x)

q(x)
dx → 0 as k → +∞.

Thus, β = 0 and the proof is complete. �

Next, we prove the coercivity of K on finite dimensional subspaces of X.

Lemma 3.3. Suppose that conditions of Theorem 1.3 are fulfilled. Then K(u)→ +∞ as ‖u‖ → +∞ on
any finite dimensional subspace of X.
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Proof. Let F be a finite dimensional subspace of X. Put

ã(x) =
a(x)
q(x)

, ∀x ∈ Ω.

First we show that there exists ε1 > 0 such that

m
{
x ∈ Ω; ã(x) |u|q(x)

≥ ε1 ‖u‖q(x)
}
≥ ε1, ∀u ∈ F\ {0}. (3.1)

Arguing by contradiction, for any positive integer n, there exists un ∈ F\ {0} such that

m
{

x ∈ Ω; ã(x) |un|
q(x)
≥

1
n
‖un‖

q(x)
}
<

1
n
. (3.2)

Set vn(x) =
un(x)
‖un‖
∈ F\ {0}. Then ‖vn‖ = 1 for all n ∈ N and

m
{

x ∈ Ω; ã(x) |vn|
q(x)
≥

1
n

}
<

1
n
.

We may assume, up to a subsequence, that vn → v0 in X for some v0 ∈ F. Then ‖v0‖ = 1 and, by
Proposition 1.2, ∫

Ω

ã(x) |vn − v0|
q(x) dx→ 0 as n→ +∞. (3.3)

Claim: There exists γ0 > 0 such that

m
{
x ∈ Ω; ã(x) |v0|

q(x)
≥ γ0

}
≥ γ0. (3.4)

Otherwise, we have

m
{

x ∈ Ω; ã(x) |v0|
q(x)
≥

1
n

}
= 0, ∀n ∈ N.

It follows that
0 ≤

∫
Ω

ã(x) |v0|
q(x)+1 dx <

‖v0‖1

n
→ 0, as n→ +∞.

Hence v0 = 0, which contradicts ‖v0‖ = 1.
Set

Ω0 =
{
x ∈ Ω; ã(x) |v0|

q(x)
≥ γ0

}
, Ωn =

{
x ∈ Ω; ã(x) |vn|

q(x) <
1
n

}
and

Ωc
n =

{
x ∈ Ω; ã(x) |vn|

q(x)
≥

1
n

}
.

By (3.2) and (3.4), we obtain

m (Ωn ∩Ω0) = m
(
Ω0\

(
Ωc

n ∩Ω0
))

≥ m (Ω0) − m
(
Ωc

n ∩Ω0
)

≥ γ0 −
1
n
>
γ0

2
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for large enough n. Consequently, for all large n, we have∫
Ω

ã(x) |vn − v0|
q(x) dx ≥

∫
Ωn∩Ω0

ã(x) |vn − v0|
q(x) dx

≥
1

2q+−1

∫
Ωn∩Ω0

ã(x) |v0|
q(x) dx −

∫
Ωn∩Ω0

ã(x) |vn|
q(x) dx

≥

(
γ0

2q+−1 −
1
n

)
m (Ωn ∩Ω0)

≥
γ2

0

2q++1 > 0,

which is a contradiction to (3.3). Therefore (3.1) holds. For the ε1 given in (3.1), let

Ωu =
{
x ∈ Ω; ã(x) |u|q(x)

≥ ε1 ‖u‖q(x)
}
, ∀u ∈ F\ {0} .

Then
m (Ωu) ≥ ε1 ∀ u ∈ F\ {0} . (3.5)

Using (B) and (3.5), for any u ∈ F\ {0} with ‖u‖ ≥ 1, we infer that

K(u) =

∫
Ω

ã(x) |u|q(x) dx ≥
∫

Ωu

ã(x) |u|q(x) dx

≥ ε1 ‖u‖q
−

m (Ωu) ≥ ε2
1 ‖u‖

q− .

This shows that K(u) → ∞ as ‖u‖ → ∞ on any finite dimensional subspace of X and this gives the
proof of our desired result. �

Lemma 3.4. Suppose that the conditions of Theorem 1.3 are satisfied. Then there exists a sequence
ρk → 0+ as k → +∞ such that

ak(λ) = inf
u∈Zk ,‖u‖=ρk

Iλ(u) ≥ 0, ∀k ≥ k1

and
dk(λ) = inf

u∈Zk ,‖u‖≤ρk
Iλ(u)→ 0 as k → +∞ uniformly for λ ∈ [1, 2].

Proof. By Propositions 1.2 and 2.1, we deduce that for any u ∈ Zk with ‖u‖ < 1, we have

Iλ(u) ≥
∫
R2N\(CΩ)2

|u(x)−u(y)|p(x,y)

2p(x,y)|x−y|N+sp(x,y) dx dy +
∫

Ω

|u|p(x)

p(x) dx

+
∫
CΩ

β(x)|u|p(x)v
p(x) dx − λ

∫
Ω

a(x)
q(x)
|u(x)|q(x)dx

≥
1

3p+−1 p+
‖u‖p+

− λ‖u‖q
+

∫
Ω

a(x)
q(x)

(
|u(x)|
‖u‖

)q(x)dx

≥
1

3p+−1 p+
‖u‖p+

−
2βk

q−
‖u‖q

+

.

(3.6)

We denote ρk = (3p+−1(4p+)βk
q− )

1
p+−q+ . By Lemma 3.2 we deduce that ρk → 0 as k → +∞. Then there exists

k1 ∈ N such that ρk ≤
1

3p+−1 p+
for all k ≥ k1. Relation (3.6) implies that

ak(λ) = inf
u∈Zk ,‖u‖=ρk

Iλ(u) ≥
1

2.3p+−1 p+
ρ

p++1
k , for all k ≥ k1.
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Furthermore, by (3.6), we have

0 ≥ inf
u∈Zk ,‖u‖≤ρk

Iλ(u) ≥ −
2βk

q−
‖u‖q

−

, ∀k ≥ k1.

Since βk → 0 as k → +∞, we deduce that

dk(λ) = inf
u∈Zk ,‖u‖=ρk

Iλ(u)→ 0 as k → +∞ uniformly for λ ∈ [1.2].

This completes the proof. �

Lemma 3.5. Assume that hypotheses of Theorem 1.3 are fulfilled. Then, for the sequence obtained in
Lemma 3.4, there exists 0 < rk < ρk for all k ∈ N such that

bk(λ) = max
u∈Yk ,‖u‖=rk

Iλ(u) < 0 for all λ ∈ [1, 2].

Proof. Let u ∈ Yk with ‖u‖ < 1 and λ ∈ [1, 2]. By (A), (P) and (3.1), there exists εk > 0 such that

Iλ(u) =

∫
R2N\(CΩ)2

|u(x) − u(y)|p(x,y)

2p(x, y)|x − y|N+sp(x,y) dx dy +

∫
Ω

|u|p(x)

p(x)
dx

+

∫
CΩ

β(x)|u|p(x)v
p(x)

dx − λ
∫

Ω

a(x)
|u(x)|q(x)

q(x)
dx

≤
3
p−
‖u‖p− − εk‖u‖q

−

m(Ωu)

≤
3
p−
‖u‖p− − ε2

k ‖u‖
q− .

Since 0 < q− < q+ < p− < p+, we deduce that for small ‖u‖ = rk we have

bk(λ) < 0, ∀k ∈ N.

This completes the proof of our lemma. �

Proof of Theorem 1.3 completed. It is cleat that condition (T1) in Theorem 3.1 holds. Combining
Lemmas 3.3, 3.4 and 3.5, we concludethat conditions (T2) and (T3) in Theorem 3.1 are satisfied. Then,
by Theorem 3.1 there exist λn → 1 and u(λn) ∈ Yn such that

I′λn
|Yn(u(λn)) = 0, Iλn(u(λn))→ ck ∈ [dk(2), bk(1)]

as n→ +∞.

For the sake of notational simplicity, we always set in what follows un = u (λn) for all n ∈ N.

Claim: the sequence (un) is bounded in X.
Otherwise, we can assume that (un) is unbounded in X. Without loss of generality, we can assume

that ‖un‖ > 1 for all n ≥ 1.
First, we can observe that there exists c > 0 such that for large enough n,

〈I′λn
(un), un〉 ≤ ‖un‖ and |Iλn(un)| ≤ c. (3.7)
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Using relation (3.7), we have

c ≥ Iλn(un) ≥
1

2p+

∫
R2N\(CΩ)2

|un(x) − un(y)|p(x,y)

|x − y|N+sp(x,y) dx dy +
1
p+

∫
Ω

|un|
p(x) dx

+ 1
p+

∫
CΩ
β(x)|un|

p(x) dx − 1
q−

∫
Ω

a(x)|un(x)|q(x)dx.
(3.8)

From Proposition 2.1, relation (3.8) and since q+ < p−, we get that (un) is bounded in X. This proves
that our claim is true. So, by Proposition 1.2 and up to a subsequence, we suppose that

un ⇀ u0 in X

and
un → u0 in Lq(x)(Ω).

In what follows we show that
un → u0 in X.

Recalling that (un) is a bounded sequence, we get

lim
n→+∞

〈I′λn
(un) − I′λn

(u0), un − u0〉 = 0. (3.9)

Hence, (3.9) and Proposition 1.2 give as n→ +∞

o(1) = 〈I′λn
(un) − I′λn

(u0), un − u0〉

=

∫
R2N\(CΩ)2

|un(x) − un(y)|p(x,y)−2(un(x) − un(y)) − |u(x) − u(y)|p(x,y)−2(u(x) − u(y))
|x − y|N+sp(x,y) A(x, y) dx dy

+

∫
Ω

[|un|
p(x)−2un − |u|p(x)−2u](un − u) dx +

∫
CΩ

β(x)[|un|
p(x)−2un − |u|p(x)−2u](un − u) dx

where A(x, y) = (un(x) − u(x) − un(y) + u(y)).
We have for all n ∈ N∫

R2N\(CΩ)2

|un(x) − un(y)|p(x,y)−2(un(x) − un(y)) − |u(x) − u(y)|p(x,y)−2(u(x) − u(y))
|x − y|N+sp(x,y) A(x, y) dx dy ≥ 0,

∫
Ω

[|un|
p(x)−2un − |u|p(x)−2u](un − u) dx ≥ 0,

and ∫
CΩ

β(x)[|un|
p(x)−2un − |u|p(x)−2u](un − u) dx ≥ 0

Therefore

lim
n→+∞

∫
R2N\(CΩ)2

|un(x) − un(y)|p(x,y)−2(un(x) − un(y)) − |u(x) − u(y)|p(x,y)−2(u(x) − u(y))
|x − y|N+sp(x,y) A(x, y) dx dy = 0,

(3.10)

lim
n→+∞

∫
Ω

[|un|
p(x)−2un − |u|p(x)−2u](un − u) dx = 0, (3.11)
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and
lim

n→+∞

∫
CΩ

β(x)[|un|
p(x)−2un − |u|p(x)−2u](un − u) dx = 0. (3.12)

Let us now recall the Simon inequalities [28, formula 2.2]|x − y|p ≤ cp

(
|x|p−2 x − |y|p−2 y

)
.(x − y) for p ≥ 2

|x − y|p ≤ Cp

[(
|x|p−2 x − |y|p−2 y

)
.(x − y)

] p
2 (|x|p + |y|p)

2−p
2 for 1 < p < 2,

(3.13)

for all x, y ∈ RN , where cp and Cp are positive constants depending only on p. Combining (3.10),
(3.11), (3.12) and (3.13), we conclude that

lim
n→+∞

‖un − u0‖ = 0.

Now, by Theorem 3.1, we conclude the proof of Theorem 1.3.
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