Research article

Existence and multiplicity of solutions for Schrödinger equations with sublinear nonlinearities

  • Received: 13 January 2021 Accepted: 09 March 2021 Published: 17 March 2021
  • MSC : 35A15, 35J60, 58E05

  • In the paper, we investigate a class of Schrödinger equations with sign-changing potentials $ V(x) $ and sublinear nonlinearities. We remove the coercive condition on $ V(x) $ usually required in the existing literature and also weaken the conditions on nonlinearities. By proving a Hardy-type inequality, extending the results in [1], and using it together with variational methods, we get at least one or infinitely many small energy solutions for the problem.

    Citation: Ye Xue, Zhiqing Han. Existence and multiplicity of solutions for Schrödinger equations with sublinear nonlinearities[J]. AIMS Mathematics, 2021, 6(6): 5479-5492. doi: 10.3934/math.2021324

    Related Papers:

  • In the paper, we investigate a class of Schrödinger equations with sign-changing potentials $ V(x) $ and sublinear nonlinearities. We remove the coercive condition on $ V(x) $ usually required in the existing literature and also weaken the conditions on nonlinearities. By proving a Hardy-type inequality, extending the results in [1], and using it together with variational methods, we get at least one or infinitely many small energy solutions for the problem.



    加载中


    [1] C. O. Alves, M. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differ. Equations, 245 (2013), 1977–1991.
    [2] A. Bahrouni, H. Ounaies, V. D. Rdulescu, Infinitely many solutions for a class of sublinear Schrödinger equations with indefinite potentials, P. Roy. Soc. Edinb. A, 145 (2015), 445–465. doi: 10.1017/S0308210513001169
    [3] A. Bahrouni, H. Ounaies, V. D. Rdulescu, Bound state solutions of sublinear Schrödinger equations with lack of compactness, RACSAM, 113 (2019), 1191–1210. doi: 10.1007/s13398-018-0541-9
    [4] G. Bao, Z. Q. Han, Infinitely many solutions for a resonant sublinear Schrödinger equation, Math. Method. Appl. Sci., 37 (2015), 2811–2816.
    [5] M. Benrhouma, H. Ounaies, Existence of solutions for a perturbation sublinear elliptic equation in ${\mathbb R}^{N} $, Nonlinear Differ. Equ. Appl., 17 (2010), 647–662. doi: 10.1007/s00030-010-0076-z
    [6] T. Bartsch, A. Pankov, Z. Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549–569. doi: 10.1142/S0219199701000494
    [7] J. Chen, X. H. Tang, Infinitely many solutions for a class of sublinear Schrödinger equations, Taiwan. J. Math., 19 (2015), 381–396. doi: 10.11650/tjm.19.2015.4044
    [8] R. Cheng, Y. Wu, Remarks on infinitely many solutions for a class of Schrödinger equations with sublinear nonlinearity, Math. Method. Appl. Sci., 43 (2020), 8527–8537. doi: 10.1002/mma.6512
    [9] Y. Cheng, T. F. Wu, Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential, Commun. Pure Appl. Anal., 15 (2016), 2457–2473. doi: 10.3934/cpaa.2016044
    [10] Y. Ding, J. Wei, Multiplicity of semiclassical solutions to nonlinear Schrödinger equations, J. Fixed Point Theory Appl., 19 (2017), 987–1010. doi: 10.1007/s11784-017-0410-8
    [11] B. Ge, Multiple solutions of nonlinear Schrödinger equation with the fractional Laplacian, Nonlinear Anal. Real, 30 (2016), 236–247. doi: 10.1016/j.nonrwa.2016.01.003
    [12] M. Giovanni, A group-theoretical approach for nonlinear Schrödinger equations, Adv. Calc. Var., 13 (2020), 403–423. doi: 10.1515/acv-2018-0016
    [13] Y. Jing, Z. Liu, Infinitely many solutions of $p-$sublinear $p-$Laplacian equations, J. Math. Anal. Appl., 429 (2015), 1240–1257. doi: 10.1016/j.jmaa.2015.04.069
    [14] A. Kristály, Multiple solutions of a sublinear Schrödinger equation, Nonlinear Differ. Equ. Appl., 14 (2007), 291–301. doi: 10.1007/s00030-007-5032-1
    [15] R. Kajikiya, Symmetric mountain pass lemma and sublinear elliptic equations, J. Differ. Equations, 260 (2016), 2587–2610. doi: 10.1016/j.jde.2015.10.016
    [16] H. Liu, H. Chen, Multiple solutions for a nonlinear Schrödinger-Poisson system with sign-changing potential, Comput. Math. Appl., 17 (2016), 1405–1416.
    [17] B. Marino, S. Enrico, Semilinear elliptic equations for beginners, London: Univ. Springer, 2011.
    [18] H. Tehrani, Existence results for an indefinite unbounded perturbation of a resonant Schrödinger equation, J. Differ. Equations, 236 (2007), 1–28. doi: 10.1016/j.jde.2007.01.019
    [19] I. Teresa, Positive solution for nonhomogeneous sublinear fractional equations in ${\mathbb R}^{N} $, Complex Var. Elliptic Equ., 63 (2018), 689–714. doi: 10.1080/17476933.2017.1332052
    [20] K. M. Teng, Multiple solutions for a class of fractional Schrödinger equations in ${\mathbb R}^N $, Nonlinear Anal. Real, 21 (2015), 76–86. doi: 10.1016/j.nonrwa.2014.06.008
    [21] M. Willem, Minimax theorems, Boston: Birkhäuser, 1996.
    [22] Q. Zhang, Q. Wang, Multiple solutions for a class of sublinear Schrödinger equations, J. Math. Anal. Appl., 389 (2012), 511–518. doi: 10.1016/j.jmaa.2011.12.003
    [23] W. Zhang, G. D. Li, C. L. Tang, Infinitely many solutions for a class of sublinear Schrödinger equations, J. Appl. Anal. Comput., 8 (2018), 1475–1493.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2430) PDF downloads(229) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog