Research article

On Janowski type p-harmonic functions associated with generalized Sǎlǎgean operator

  • Received: 07 June 2020 Accepted: 16 October 2020 Published: 22 October 2020
  • MSC : 30C45, 30C50, 30C80

  • In this paper, some classes of Janowski type p-harmonic functions associated with the generalized Sǎlǎgean operator are introduced. Further, coefficient conditions, distortion estimates and the other properties of the classes are obtained. On the one hand, the results presented here generalize the results of Yașar and Yalçin [8]. On the other hand, we obtain some new results on sufficient convolution condition of the classes.

    Citation: Shuhai Li, Lina Ma, Huo Tang. On Janowski type p-harmonic functions associated with generalized Sǎlǎgean operator[J]. AIMS Mathematics, 2021, 6(1): 569-583. doi: 10.3934/math.2021035

    Related Papers:

  • In this paper, some classes of Janowski type p-harmonic functions associated with the generalized Sǎlǎgean operator are introduced. Further, coefficient conditions, distortion estimates and the other properties of the classes are obtained. On the one hand, the results presented here generalize the results of Yașar and Yalçin [8]. On the other hand, we obtain some new results on sufficient convolution condition of the classes.


    加载中


    [1] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Math., 9 (1984), 3-25.
    [2] P. L. Duren, Harmonic Mappings in the Plane, Cambridge University Press, 2004.
    [3] J. Dziok, On Janowski harmonic functions, J. Appl. Anal., 21 (2015), 99-107.
    [4] Z. Abdulhadi, Y. Abu Muhanna, Landaus theorem for biharmonic mappings, J. Math. Anal. Appl., 338 (2008), 705-709.
    [5] Z. Abdulhadi, Y. Abu Muhanna, S. Khuri, On univalent solutions of the biharmonic equations, J. Inequal. Appl., 5 (2005), 469-478.
    [6] Z. Abdulhadi, Y. Abu Muhanna, S. Khuri, On some properties of solutions of the biharmonic equation, Appl. Math. Comput., 177 (2006), 346-351.
    [7] S. Chen, S. Ponnusamy, X. Wang, Bloch constant and Landau's theorem for planar p-harmonic mappings, J. Math. Anal. Appl., 373 (2011), 102-110. doi: 10.1016/j.jmaa.2010.06.025
    [8] E. Yașar, S. Yalçin, Properties of a class p-harmonic functions, Abstr. Appl. Anal., 2013 (2013), 1-8.
    [9] J. Qiao, X. Wang, On p-harmonic univalent mappings, Acta Mathematica entia, 32 (2012), 588-600.
    [10] S. Porwal, K. K. Dixit, On a p-harmonic mappings, Tamkang Journal of Mathematics, 44 (2013), 313-325. doi: 10.5556/j.tkjm.44.2013.1053
    [11] Q. Luo, X. Wang, The starlikeness, convexity, covering theorem and extreme points of p-harmonic mappings, B. Iran. Math. Soc., 38 (2012), 581-596.
    [12] J. Qiao, J. Chen, M. Shi, On certain subclasses of univalent p-harmonic mappings, B. Iran. Math. Soc., 41 (2015), 429-451.
    [13] P. Li, S. A. Khuri, X. Wang, On certain geometric properties of polyharmonic mappings, J. Math. Anal. Appl., 434 (2016), 1462-1473. doi: 10.1016/j.jmaa.2015.01.049
    [14] S. Li, H. Tang, X. Niu, On extreme points and product properties of a new subclass of p-harmonic functions, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
    [15] S. Li, P. Liu, A new class of harmonic univalent functions by the generalized Sǎlǎgean operator, Wuhan University Journal of Natural Sciences, 12 (2007), 965-970. doi: 10.1007/s11859-007-0044-6
    [16] F. M. Al-Oboudi, On univalent functions defined by a generalized Sǎlǎgean operator, International Journal of Mathematics and Mathematical Sciences, 27 (2004), 1429-1436.
    [17] G. S. Sǎlǎgean, Subclasses of Univalent Functions, Springer, Berlin, 1981,362-372.
    [18] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Pol. Math., 28 (1973), 297-326. doi: 10.4064/ap-28-3-297-326
    [19] M. Liu, On a subclass of p-valent close to convex functions of order β and type α, Journal of Mathematical Study, 30 (1997), 102-104.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3024) PDF downloads(132) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog