Review Topical Sections

Plasma electrolytic oxidation (PEO): An alternative to conventional anodization process

  • Received: 04 July 2024 Revised: 08 August 2024 Accepted: 13 August 2024 Published: 16 August 2024
  • Due to the need to develop methods that optimize the surface properties of lightweight alloys such as aluminum, titanium, and magnesium and align with contemporary requirements of the 21st century, such as enhanced environmental and sanitary efficiency, the plasma electrolytic oxidation (PEO) process stands out as a comprehensive solution. This process can develop oxide coatings on the mentioned alloys, which exhibit superior physical and chemical properties compared with conventional methods. Since 2010, research in this area has been conducted with real-world applications. Recent studies have adopted experimental design approaches to optimize parameters to reduce operational costs and make the technology more accessible. The present study conducted a comparative analysis between treatments performed by conventional methods and by plasma processes, highlighting the most promising results.

    Citation: Rafael R. Lucas, Rita C.M. Sales-Contini, Francisco J.G. da Silva, Edson C. Botelho, Rogério P. Mota. Plasma electrolytic oxidation (PEO): An alternative to conventional anodization process[J]. AIMS Materials Science, 2024, 11(4): 684-711. doi: 10.3934/matersci.2024035

    Related Papers:

  • Due to the need to develop methods that optimize the surface properties of lightweight alloys such as aluminum, titanium, and magnesium and align with contemporary requirements of the 21st century, such as enhanced environmental and sanitary efficiency, the plasma electrolytic oxidation (PEO) process stands out as a comprehensive solution. This process can develop oxide coatings on the mentioned alloys, which exhibit superior physical and chemical properties compared with conventional methods. Since 2010, research in this area has been conducted with real-world applications. Recent studies have adopted experimental design approaches to optimize parameters to reduce operational costs and make the technology more accessible. The present study conducted a comparative analysis between treatments performed by conventional methods and by plasma processes, highlighting the most promising results.



    加载中


    [1] Lucas R, Gonç alves L, Santos D (2020) Morphological and chemical characterization of oxide films produced by plasma anodization of 5052 aluminum alloy in solution containing sodium silicate and sodium phosphate. Rev Bras Apl Vac Campinas 39: 33–41. https://doi.org/10.17563/rbav.v39i1.1154 doi: 10.17563/rbav.v39i1.1154
    [2] Hou F, Gorthy R, Mardon I, et al. (2022) Low voltage environmentally friendly plasma electrolytic oxidation process for titanium alloys. Sci Rep 12: 6037. https://doi.org/10.1038/s41598-022-09693-w doi: 10.1038/s41598-022-09693-w
    [3] Gaona-Tiburcio C, Jáquez-Muñ oz JM, Nieves-Mendoza D, et al. (2024) Corrosion behavior of titanium alloys (Ti CP2, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-4V and Ti Beta-C) with anodized and exposed in NaCl and H2SO4 solutions. Metals 14: 160. https://doi.org/10.3390/met14020160 doi: 10.3390/met14020160
    [4] Muñ oz J, Tiburcio C, Nava J, et al. (2022) Electrochemical corrosion of titanium and titanium alloys anodized in H2SO4 and H3PO4 solutions. Coatings 12: 325. https://doi.org/10.3390/coatings12030325 doi: 10.3390/coatings12030325
    [5] Indira K, Mudali U, Nishimura T, et al. (2015) A review on TiO2 nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. J Bio Tribo Corros 1: 28. https://doi.org/10.1007/s40735-015-0024-x doi: 10.1007/s40735-015-0024-x
    [6] Djendel A, Ahmed N, Knauth P, et al. (2023) Improved corrosion and adhesion properties of titanium alloy for endoprostheses applications using a two-step anodization method. Surf Coat Technol 461: 129437. https://doi.org/10.1016/j.surfcoat.2023.129437 doi: 10.1016/j.surfcoat.2023.129437
    [7] Ramazanova ZM, Zamalitdinova MG, Kovalenko MV (2022) Investigation of the properties of oxide coatings on titanium alloys obtained by plasma electrolytic oxidation. Komp Ispol Mineral Syra 321: 5–13. https://doi.org/10.31643/2022/6445.12 doi: 10.31643/2022/6445.12
    [8] Molina J, Gómez A, Belda J, et al. (2023) Long-term antibacterial Ag+ release biomaterials based on anodized Ti6Al4V and silver nanoparticles. Col Surf A: Physicochem Eng Asp 676: 132243. https://doi.org/10.1016/j.colsurfa.2023.132243 doi: 10.1016/j.colsurfa.2023.132243
    [9] Rogov A, Nemcova A, Hashimoto T, et al. (2022) Analysis of electrical response, gas evolution and coating morphology during transition to soft sparking PEO of Al. Surf Coat Technol 442: 128142. https://doi.org/10.1016/j.surfcoat.2022.128142 doi: 10.1016/j.surfcoat.2022.128142
    [10] Lucas R, Mota R, Abrahã o A, et al. (2022) Characterization of oxide coating grown by plasma electrolytic oxidation (PEO) at different times on aluminum alloy AA2024-T3. MRS Commun 12: 266–271. https://doi.org/10.1557/s43579-022-00174-9 doi: 10.1557/s43579-022-00174-9
    [11] Oh G, Yoon J, Huh J, et al. (2023) Effect of frequency of plasma electrolytic oxidation on the microstructure and corrosion resistance of 6061 aluminium alloy. Surf Coat Technol 471: 129861. https://doi.org/10.1016/j.surfcoat.2023.129861 doi: 10.1016/j.surfcoat.2023.129861
    [12] Yerokhin A, Nie X, Leyland A, et al. (1999) Plasma electrolysis for surface engineering. Surf Coat Technol 122: 73. https://doi.org/10.1016/S0257-8972(99)00441-7 doi: 10.1016/S0257-8972(99)00441-7
    [13] Marcuz N, Ribeiro R, Rangel E, et al. (2024) Exploiting the effect of PEO parameters on the surface of AISI 1020 low-carbon steel treated in a TaOH-rich electrolyte. Surf Coat Technol 477: 130374. https://doi.org/10.1016/j.surfcoat.2024.130374 doi: 10.1016/j.surfcoat.2024.130374
    [14] Marcuz N, Ribeiro R, Rangel E, et al. (2023) The effect of PEO treatment in a Ta-rich electrolyte on the surface and corrosion properties of low-carbon steel for potential use as a biomedical material. Metals 13: 520. https://doi.org/10.3390/met13030520 doi: 10.3390/met13030520
    [15] Fattah A, Molaei M, Kaseem M (2024) A review on the plasma electrolytic oxidation (PEO) process applied to copper and brass. Surf Interf 46: 104179. https://doi.org/10.1016/j.surfin.2024.104179 doi: 10.1016/j.surfin.2024.104179
    [16] Xhanari K, Finšgar M (2016) Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: A review. Arab J Chem 12: 4646. https://doi.org/10.1016/j.arabjc.2016.08.009 doi: 10.1016/j.arabjc.2016.08.009
    [17] Gobara M, Baraka A, Akid R, et al. (2020) Corrosion protection mechanism of Ce4+/organic inhibitor for AA2024 in 3.5% NaCl. RSC Adv 10: 2227. https://doi.org/10.1039/C9RA09552G doi: 10.1039/C9RA09552G
    [18] Zamani P, Valefi Z, Jafarzadeh K (2022) Comprehensive study on corrosion protection properties of Al2O3, Cr2O3 and Al2O3–Cr2O3 ceramic coatings deposited by plasma spraying on carbon steel. Ceram Int 48: 1574. https://doi.org/10.1016/j.ceramint.2021.09.237 doi: 10.1016/j.ceramint.2021.09.237
    [19] Rabani J, Goldstein S (2015) Mechanisms of reactions induced by photocatalysis of titanium dioxide nanoparticles. Env Photochem 1: 115. https://doi.org/10.1007/698_2013_248 doi: 10.1007/698_2013_248
    [20] Xu Y, Liu Z, Dai Y, et al. (2024) Oxidation-complexation removal of nitric oxide by anatase titanium dioxide with exposed (0 0 1) facets ultraviolet-induced ferrous ethylenediaminetetraacetate. Separat Purific Technol 349: 127927. https://doi.org/10.1016/j.seppur.2024.127927 doi: 10.1016/j.seppur.2024.127927
    [21] Vaquila I, Vergara L, Passeggi M, et al. (1999) Chemical reactions at surfaces: titanium oxidation. Surf Coat Technol 122: 67. https://doi.org/10.1016/S0257-8972(99)00420-X doi: 10.1016/S0257-8972(99)00420-X
    [22] Kasprolewicz B, Ossowska A (2023) Recent advances in electrochemically surface treated titanium and its alloys for biomedical applications: A review of anodic and plasma electrolytic oxidation methods. Mater Today Commun 34: 105425. https://doi.org/10.1016/j.mtcomm.2023.105425 doi: 10.1016/j.mtcomm.2023.105425
    [23] Kaviti A, Akkala S (2023) Influence of anodization time on Al2O3 nanoporous morphology and optical properties using energy band gap at room temperature. Result Eng 17: 100816. https://doi.org/10.1016/j.rineng.2022.100816 doi: 10.1016/j.rineng.2022.100816
    [24] Thaik N, Kooptarnond K, Meesane J, et al. (2019) Effect of anodizing time on morphology and wettability of TiO2 nanotubes prepared by carbon cathode. Mater Sci Forum 962: 145. https://doi.org/10.4028/www.scientific.net/MSF.962.145 doi: 10.4028/www.scientific.net/MSF.962.145
    [25] Mehdizade M, Soltanieh M, Eivani A (2019) Investigation of anodizing time and pulse voltage modes on the corrosion behavior of nanostructured anodic layer in commercial pure aluminum. Surf Coat Technol 358: 741. https://doi.org/10.1016/j.surfcoat.2018.08.046 doi: 10.1016/j.surfcoat.2018.08.046
    [26] Gurgul M, Gawlak K, Knapik A, et al. (2023) The effect of electrolyte temperature on the growth, morphology, and properties of porous anodic tin oxide films. J Electroanal Chem 932: 117246. https://doi.org/10.1016/j.jelechem.2023.117246 doi: 10.1016/j.jelechem.2023.117246
    [27] Theohari S, Kontogeorgou C (2020) Study of electrochemical behavior of commercial AA5052 during anodizing in phosphoric acid solution in relation to Mg species content in films. Surf Eng Appl Electrochem 56: 71–82. https://doi.org/10.3103/S1068375520010159 doi: 10.3103/S1068375520010159
    [28] Boldrini D, Yañ ez M, Tonetto G (2017) Influence of the anodizing process variables on the acidic properties of anodic alumina films. Braz J Chem Eng 34: 1043–1053. https://doi.org/10.1590/0104-6632.20170344s20160024 doi: 10.1590/0104-6632.20170344s20160024
    [29] Chamidy H, Ngatin A, Rosyadi A, et al. (2023) Effect of voltage on the thickness of oxide layer at aluminum alloys for structural bonding using phosphoric sulfuric acid anodizing (PSA) process. Int J Mec Eng Technol Appl 4: 69–76. https://doi.org/10.21776/MECHTA.2023.004.01.8 doi: 10.21776/MECHTA.2023.004.01.8
    [30] Arsyad H, Arma L, Yusdiana Y, et al. (2023) Evaluation of low voltage anodizing process on the aluminum foil in sulphuric acid solution. Tribol Ind 45: 237–246. https://doi.org/10.24874/ti.1432.01.23.05 doi: 10.24874/ti.1432.01.23.05
    [31] Kaneco S, Chen Y, Westerhoff P (2007) Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions. Scrip Mater 56: 373–376. https://doi.org/10.1016/j.scriptamat.2006.11.001 doi: 10.1016/j.scriptamat.2006.11.001
    [32] Kozlov I, Vinogradov S, Duyunova S, et al. (2020) Effect of the plasma electrolytic oxidation time of an ML10 alloy in a silicate–phosphate electrolyte on the structure and properties of the coating. Russ Metall 2020: 1542–1549. https://doi.org/10.1134/S0036029520130182 doi: 10.1134/S0036029520130182
    [33] Ianhez LS, Pagani PAG, Villanova RL, et al. (2021) Plasma electrolytic oxidation of Ti6Al4V with variation in sample exposure time for biomedical application. Braz J Develop 7: 42189–42199. https://doi.org/10.34117/bjdv7n4-604 doi: 10.34117/bjdv7n4-604
    [34] Fatimah S, Kamil M, Han D, et al. (2022) Development of anti-corrosive coating on AZ31 Mg alloy subjected to plasma electrolytic oxidation at sub-zero temperature. J Magnes Alloy 10: 1915–1929. https://doi.org/10.1016/j.jma.2021.07.013 doi: 10.1016/j.jma.2021.07.013
    [35] Yi A, Liao Z, Zhu W, et al. (2020) Influence of electrolyte temperature on the color values of black plasma electrolytic oxidation coatings on AZ31B Mg alloy. Coatings 10: 890. https://doi.org/10.3390/coatings10090890 doi: 10.3390/coatings10090890
    [36] Lee S, Yashiro H, Kure-Chu S (2019) Electrolyte temperature dependence on the properties of plasma anodized oxide films formed on AZ91D magnesium alloy. Korean J Mater Res 29: 288–296. https://doi.org/10.3740/MRSK.2019.29.5.288 doi: 10.3740/MRSK.2019.29.5.288
    [37] Liao Y, Wang X, Xu C, et al. (2022) Influence of voltage on anode gas compositions during plasma electrolytic oxidation of 60 vol.% sicp/2009 aluminum matrix composite. Surf Rev Lett 29: 2350001. https://doi.org/10.1142/S0218625X23500014 doi: 10.1142/S0218625X23500014
    [38] Quintero D, Gómez M, Araujo W, et al. (2019) Influence of the electrical parameters of the anodizing PEO process on wear and corrosion resistance of niobium. Surf Coat Technol 380: 125067. https://doi.org/10.1016/j.surfcoat.2019.125067 doi: 10.1016/j.surfcoat.2019.125067
    [39] Serdechnova M, Karpushenkov S, Karpushenkava L, et al. (2018) The influence of PSA pre-anodization of AA2024 on PEO coating formation: Composition, microstructure, corrosion, and wear behaviors. Materials 11: 2428. https://doi.org/10.3390/ma11122428 doi: 10.3390/ma11122428
    [40] Yeshmanova G, Blawert C, Serdechnova M, et al. (2024) Effect of electrolyte composition on the formation of PEO coatings on AA2024 aluminium alloy. Surf Interf 44: 103797. https://doi.org/10.1016/j.surfin.2023.103797 doi: 10.1016/j.surfin.2023.103797
    [41] Shang J, Liu F, Gu G, et al. (2022) Effects of Ce(NO3)3 concentration on microstructure and properties of plasma electrolytic oxidation layer on 6061 alloy. Mater Res Express 9: 096513. https://doi.org/10.1088/2053-1591/ac859f doi: 10.1088/2053-1591/ac859f
    [42] He W, Ren XH, Liu JY (2024) Corrosion inhibition performance of RNC-n on aluminum alloy surface in alkaline solution. J Mol Struct 1317: 139107. https://doi.org/10.1016/j.molstruc.2024.139107 doi: 10.1016/j.molstruc.2024.139107
    [43] Lionetto F, Mele C, Leo P, et al. (2018) Ultrasonic spot welding of carbon fiber reinforced epoxy composites to aluminum: Mechanical and electrochemical characterization. Compos Part B-Eng 144: 134–142. https://doi.org/10.1016/j.compositesb.2018.02.026 doi: 10.1016/j.compositesb.2018.02.026
    [44] Kim K, Ramaswamy N (2009) Electrochemical surface modification of titanium in dentistry. Dental Mater J 28: 20–36. https://doi.org/10.4012/dmj.28.20 doi: 10.4012/dmj.28.20
    [45] Yang B, Uchida M, Kim H, et al. (2004) Preparation of bioactive titanium metal via anodic oxidation treatment. Biomater 25: 1003–1010. https://doi.org/10.1016/S0142-9612(03)00626-4 doi: 10.1016/S0142-9612(03)00626-4
    [46] Cintra I, Abrahã o A, Silva F, et al. (2019) Characterization of pei/carbon fiber composite joints subjected to environmental conditions. CIMATech 1: 12. https://doi.org/10.37619/issn2447-5378.v1i6.210.138-149 doi: 10.37619/issn2447-5378.v1i6.210.138-149
    [47] Ribeiro M (2022) Evaluation of the effect of anodization on PEI/fiberglass and AA2024-T3 welded joints using the oxy-fuel method. Master Thesis. Available from: http://hdl.handle.net/11449/236687.
    [48] Lucas R, Marques L, Botelho E, et al. (2024) Experimental design of the adhesion between a PEI/glass fiber composite and the AA1100 aluminum alloy with oxide coating produced via plasma electrolytic oxidation (PEO). Ceramics 7: 596–606. https://doi.org/10.3390/ceramics7020039 doi: 10.3390/ceramics7020039
    [49] Lucas R (2022) Study of plasma electrolytic oxidation on AA2024-T3 alloy for welding with PEI/Fiberglass composite. Master Thesis. Available from: http://hdl.handle.net/11449/234558.
    [50] Tamindarov D, Smyslov A, Sidelnikov A (2023) Effect of electrolyte composition on plasma electrolytic polishing of titanium alloys. Inorg Mater Appl Res 14: 732–737. https://doi.org/10.1134/S2075113323030437 doi: 10.1134/S2075113323030437
    [51] Tsai D, Chou C (2021) Influences of growth species and inclusions on the current–voltage behavior of plasma electrolytic oxidation: A review. Coatings 11: 270. https://doi.org/10.3390/coatings11030270 doi: 10.3390/coatings11030270
    [52] Raffin F, Echouard J, Volovitch P (2023) Influence of the anodizing time on the microstructure and immersion stability of tartaric-sulfuric acid anodized aluminum alloys. Metals 13: 993. https://doi.org/10.3390/met13050993 doi: 10.3390/met13050993
    [53] Durdu S, Deniz Ö , Kutbay I, et al. (2013) Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation. J All Comp 551: 422–429. https://doi.org/10.1016/j.jallcom.2012.11.024 doi: 10.1016/j.jallcom.2012.11.024
    [54] Guo F, Cao Y, Wang K, et al. (2022) Effect of the anodizing temperature on microstructure and tribological properties of 6061 aluminum alloy anodic oxide films. Coatings 12: 314. https://doi.org/10.3390/coatings12030314 doi: 10.3390/coatings12030314
    [55] Serikov T, Baltabekov A, Aidarova D, et al. (2022) Effect of anodizing voltage on the photocatalytic activity of films formed by titanium dioxide nanotubes. Euras Phys Tech J 19: 28. https://doi.org/ 10.31489/2022No4/28-33
    [56] Simchen F, Sieber M, Kopp A, et al. (2020) Introduction to plasma electrolytic oxidation—An overview of the process and applications. Coatings 10: 628. https://doi.org/10.3390/coatings10070628 doi: 10.3390/coatings10070628
    [57] Aliofkhazraei M, Macdonald D, Matykina E, et al. (2021) Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications and limitations. Appl Surf Sci Adv 5: 100121. https://doi.org/10.1016/j.apsadv.2021.100121 doi: 10.1016/j.apsadv.2021.100121
    [58] Moga S, Malinovschi V, Marin A, et al. (2023) Mechanical and corrosion-resistant coatings prepared on AZ63 Mg alloy by plasma electrolytic oxidation. Surf Coat Technol 462: 129464. https://doi.org/10.1016/j.surfcoat.2023.129464 doi: 10.1016/j.surfcoat.2023.129464
    [59] Abbasi S, Mahboob A, Zamani H, et al. (2022) The tribological behavior of nanocrystalline TiO2 coating produced by plasma electrolytic oxidation. J Nanomater 2022: 5675038. https://doi.org/10.1155/2022/5675038 doi: 10.1155/2022/5675038
    [60] Sourani F, Raeissi K, Enayati M, et al. (2022) Corrosion and tribocorrosion behavior of ZrO2-Al2O3 composite coatings developed by plasma electrolytic oxidation for load-bearing implants. J All Comp 920: 165856. https://doi.org/10.1016/j.jallcom.2022.165856 doi: 10.1016/j.jallcom.2022.165856
    [61] Lunder O, Olsen B, Nisancioglu K (2002) Pre-treatment of AA6060 aluminium alloy for adhesive bonding. Int J Adhes Adhes 22: 143–150. https://doi.org/10.1016/S0143-7496(01)00049-5. doi: 10.1016/S0143-7496(01)00049-5
    [62] Shore D, Wilson J, Matthews A, et al. (2021) Adhesive bond strength of PEO coated AA6060- T6. Surf Coat Technol 428: 127898. https://doi.org/10.1016/j.surfcoat.2021.127898 doi: 10.1016/j.surfcoat.2021.127898
    [63] Sobolev A, Bograchev D, Borodianskiy K, et al. (2022) Kinetics and mechanism of corrosion of oxide coating fabricated on aluminum alloy by the plasma electrolytic oxidation in molten salt. Corros Sci 208: 110604. https://doi.org/10.1016/j.corsci.2022.110604 doi: 10.1016/j.corsci.2022.110604
    [64] Student M, Pohrelyuh I, Padgurskas J, et al. (2023) Influence of plasma electrolytic oxidation of cast Al-Si alloys on their phase composition and abrasive wear resistance. Coatings 13: 637. https://doi.org/10.3390/coatings13030637 doi: 10.3390/coatings13030637
    [65] Lucas R, Sales-Contini R, Marques L, et al. (2024) Characterization of the hybrid joint between AA2024-T3 alloy and thermoplastic composite obtained by oxy-fuel welding (OFW). AIMS Mater Sci 11: 585–601. https://doi.org/10.3934/matersci.2024029 doi: 10.3934/matersci.2024029
    [66] Abibe A, Sô nego M, Santos J, et al. (2016) On the feasibility of a friction-based staking joining method for polymer-metal hybrid structures. Mater Design 92: 632–642. https://doi.org/10.1016/j.matdes.2015.12.087 doi: 10.1016/j.matdes.2015.12.087
    [67] Aliasghari S, Ghorbani M, Skeldon P, et al. (2017) Effect of plasma electrolytic oxidation on joining of AA 5052 aluminium alloy to polypropylene using friction stir spot welding, Surf Coat Technol 313: 274–281. https://doi.org/10.1016/j.surfcoat.2017.01.084 doi: 10.1016/j.surfcoat.2017.01.084
    [68] Reis J, Cintra I, Marques L, et al. (2024) Study on YB-laser welding applied on aluminum/polymer composites. J Adhes Sci Technol 38: 716–737. https://doi.org/10.1080/01694243.2023.2241634 doi: 10.1080/01694243.2023.2241634
    [69] Gu J, Zhang X, Yu L (2023) Investigation on anodized 5052 aluminum alloy and its corrosion resistance in simulated acid rain. Int J Electrochem Sci 18: 100336. https://doi.org/10.1016/j.ijoes.2023.100336 doi: 10.1016/j.ijoes.2023.100336
    [70] ASTM (2015) Standard practice for calculation of corrosion rates and related information from electrochemical measurements. Available from: https://www.astm.org/g0102-89r15e01.html.
    [71] Pezzato L, Gennari C, Franceschi M, et al. (2022) Influence of silicon morphology on direct current plasma electrolytic oxidation process in AlSi10Mg alloy produced with laser powder bed fusion. Sci Rep 12: 14329. https://doi.org/10.1038/s41598-022-18176-x doi: 10.1038/s41598-022-18176-x
    [72] Valentini F, Pezzato L, Dabalà M, et al. (2023) Study of the effect of functionalization with inhibitors on the corrosion properties of PEO-coated additive manufactured AlSi10Mg alloy. J Mater Res Technol 27: 3595–3609. https://doi.org/10.1016/j.jmrt.2023.10.160 doi: 10.1016/j.jmrt.2023.10.160
    [73] Tu C, Chen X, Liu C, et al (2023) Plasma electrolytic oxidation coatings of a 6061 Al alloy in an electrolyte with the addition of K2ZrF6. Materials 16: 4142. https://doi.org/10.3390/ma16114142 doi: 10.3390/ma16114142
    [74] Ortega A, Viteri V, Alves S, et al. (2022) Multifunctional TiO2 coatings developed by plasma electrolytic oxidation technique on a Ti20Nb20Zr4Ta alloy for dental applications. Biomater Adv 138: 212875. https://doi.org/10.1016/j.bioadv.2022.212875 doi: 10.1016/j.bioadv.2022.212875
    [75] Santos PB, de Castro VV, Baldin EK, et al. (2022) Wear resistance of plasma electrolytic oxidation coatings on Ti-6Al-4V eli alloy processed by additive manufacturing. Metals 12: 1070. https://doi.org/10.3390/met12071070 doi: 10.3390/met12071070
    [76] Grigoriev S, Peretyagin N, Apelfeld A, et al. (2023) Investigation of tribological characteristics of PEO coatings formed on Ti6Al4V titanium alloy in electrolytes with graphene oxide additives. Materials 16: 3928. https://doi.org/10.3390/ma16113928 doi: 10.3390/ma16113928
    [77] Sotomonte S, Pinzon C, Vergara S (2016) Growth of PEO ceramic coatings on AA2024-T3 aluminium alloy. J Phys: Conf Ser 687: 012037. https://doi.org/10.1088/1742-6596/687/1/012037 doi: 10.1088/1742-6596/687/1/012037
    [78] Zhu L, Ke X, Li J, et al. (2021) Growth mechanisms for initial stages of plasma electrolytic oxidation coating on Al. Surf Interf 25: 101186. https://doi.org/10.1016/j.surfin.2021.101186 doi: 10.1016/j.surfin.2021.101186
    [79] Hussein R, Nie X, Northwood D (2013) An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing. Electroch Acta 112: 111–119. https://doi.org/10.1016/j.electacta.2013.08.137 doi: 10.1016/j.electacta.2013.08.137
    [80] Sudararajan G, Krishna L (2003) Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surf Coat Technol 167: 269–277. https://doi.org/10.1016/S0257-8972(02)00918-0 doi: 10.1016/S0257-8972(02)00918-0
    [81] Matykina E, Arrabal R, Skeldon P, et al. (2010) Plasma electrolytic oxidation of a zirconium alloy under AC conditions. Surf Coat Technol 204: 2142–2151. https://doi.org/10.1016/j.surfcoat.2009.11.042 doi: 10.1016/j.surfcoat.2009.11.042
    [82] Rogov A, Matthews A, Yerokhin A (2020) Relaxation kinetics of plasma electrolytic oxidation coated Al electrode: Insight into the role of negative current. J Phys Chem C 124: 23784–23797. https://dx.doi.org/10.1021/acs.jpcc.0c07714?ref = pdf
    [83] Matykina E, Arrabal R, Mohedano M, et al. (2017) Recent advances in energy efficient PEO processing of aluminium alloys. Trans Nonferrous Met Soc China 27: 1439–1454. https://doi.org/10.1016/S1003-6326(17)60166-3 doi: 10.1016/S1003-6326(17)60166-3
    [84] Sikdar S, Menezes PV, Maccione R, et al. (2021) Plasma electrolytic oxidation (PEO) process—Processing, properties, and applications. Nanomaterials 11: 1375. https://doi.org/10.3390/nano11061375 doi: 10.3390/nano11061375
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(884) PDF downloads(123) Cited by(1)

Article outline

Figures and Tables

Figures(8)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog