Citation: Erkan Oterkus, Timon Rabczuk, Selda Oterkus. Special Issue: Peridynamics and its applications[J]. AIMS Materials Science, 2024, 11(3): 602-604. doi: 10.3934/matersci.2024030
[1] | Smagul Karazhanov, Ana Cremades . Special issue on Nanomaterials for energy and environmental applications. AIMS Materials Science, 2016, 3(3): 1125-1125. doi: 10.3934/matersci.2016.3.1125 |
[2] | Yakubu Galadima, Erkan Oterkus, Selda Oterkus . Two-dimensional implementation of the coarsening method for linear peridynamics. AIMS Materials Science, 2019, 6(2): 252-275. doi: 10.3934/matersci.2019.2.252 |
[3] | Holm Altenbach, Oleksiy Larin, Konstantin Naumenko, Olha Sukhanova, Mathias Würkner . Elastic plate under low velocity impact: Classical continuum mechanics vs peridynamics analysis. AIMS Materials Science, 2022, 9(5): 702-718. doi: 10.3934/matersci.2022043 |
[4] | Aylin Ahadi, Jakob Krochmal . Anisotropic peridynamic model—Formulation and implementation. AIMS Materials Science, 2018, 5(4): 742-755. doi: 10.3934/matersci.2018.4.742 |
[5] | Kai Friebertshäuser, Christian Wieners, Kerstin Weinberg . Dynamic fracture with continuum-kinematics-based peridynamics. AIMS Materials Science, 2022, 9(6): 791-807. doi: 10.3934/matersci.2022049 |
[6] | Erkan Oterkus, Selda Oterkus . Recent advances in peridynamic theory: A review. AIMS Materials Science, 2024, 11(3): 515-546. doi: 10.3934/matersci.2024026 |
[7] | Haiming Wen . Preface to the special issue on advanced microstructural characterization of materials. AIMS Materials Science, 2016, 3(3): 1255-1255. doi: 10.3934/matersci.2016.3.1255 |
[8] | Kunio Hasegawa . Special issue on interaction of multiple cracks in materials—Volume 1 and 2. AIMS Materials Science, 2017, 4(2): 503-504. doi: 10.3934/matersci.2017.2.503 |
[9] | K.A. Lazopoulos, E. Sideridis, A.K. Lazopoulos . On Λ-Fractional peridynamic mechanics. AIMS Materials Science, 2022, 9(5): 684-701. doi: 10.3934/matersci.2022042 |
[10] | Bozo Vazic, Hanlin Wang, Cagan Diyaroglu, Selda Oterkus, Erkan Oterkus . Dynamic propagation of a macrocrack interacting with parallel small cracks. AIMS Materials Science, 2017, 4(1): 118-136. doi: 10.3934/matersci.2017.1.118 |
Peridynamics (PD) is a new continuum mechanics formulation [1]. It was introduced mainly to overcome the limitations of classical continuum mechanics (CCM). PD uses integro-differential equations to represent equations of material points and equations that do not contain spatial derivatives. This brings an important advantage when analyzing cracks, since the displacement field is not continuous along the crack boundaries and spatial derivatives are not defined there. Moreover, PD formulations are non-local. Material points inside a finite interaction domain, called horizon, can interact with each other without being in physical contact [2]. This provides an opportunity to represent material behavior that cannot be properly defined in CCM. Therefore, it can be a suitable framework for multiscale analysis of materials [3,4]. In addition, PD can also be used for multiphysics analysis of materials and structures. PD formulations for various physical fields are currently available, including thermal [5], moisture diffusion [6], porous flow [7], or fluid flow applications [8]. As opposed to widely used finite element method and semi-analytical approaches [9], PD equations are usually solved numerically based on one meshless approach. To improve computational time, different methods such as dual-horizon peridynamics [10,11] or double-horizon peridynamics [12] can be utilized. Several non-local operators have also been introduced in the literature [13,14].
The aim of this special issue is to provide a platform to present some new advances in peridynamics and its applications. Six journal papers were published as part of this special issue. Lazopoulos et al. [15] presented Λ-fractional peridynamic mechanics, which can be suitable for different topologies and describe various inhomogeneities in various materials with more realistic rules. In another study, Lazopoulos and Lazopoulos [16] considered the Λ-fractional beam bending problem by allowing elastic curves with non-smooth curvatures. Friebertshäuser et al. [17] used a continuum kinematics–based peridynamics approach to investigate dynamic fracture including impact damage and crack initiation. Altenbach et al. [18] compared CCM and PD models for the structural analysis of a monolithic glass plate subjected to ball drop. A comprehensive review of recent advances in peridynamic theory was given by Oterkus and Oterkus [19]. Finally, Ramadan [20] presented multi-objective optimization and numerical simulations to optimize the shear strength of a reinforced concrete T beam.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Erkan Oterkus, Timon Rabczuk and Selda Oterkus are on a special issue editorial board for AIMS Materials Science and were not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.
[1] |
Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48: 175–209. https://doi.org/10.1016/S0022-5096(99)00029-0 doi: 10.1016/S0022-5096(99)00029-0
![]() |
[2] | Madenci E, Oterkus E (2013) Peridynamic Theory and its Applications, New York: Springer. https://doi.org/10.1007/978-1-4614-8465-3 |
[3] | Liu X, He X, Lu C, et al. (2021) Peridynamic modeling at nano-scale, In: Oterkus E, Oterkus S, Madenci E, Peridynamic Modeling, Numerical Techniques, and Applications, Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-820069-8.00012-3 |
[4] |
Liu X, He X, Wang J, et al. (2018) An ordinary state-based peridynamic model for the fracture of zigzag graphene sheets. Proc R Soc A 474: 20180019. https://doi.org/10.1098/rspa.2018.0019 doi: 10.1098/rspa.2018.0019
![]() |
[5] |
Wang B, Oterkus S, Oterkus E (2021) Thermal diffusion analysis by using dual horizon peridynamics. J Therm Stresses 44: 51–74. https://doi.org/10.1080/01495739.2020.1843378 doi: 10.1080/01495739.2020.1843378
![]() |
[6] |
Diyaroglu C, Oterkus S, Madenci E, et al. (2017) Peridynamic wetness approach for moisture concentration analysis in electronic packages. Microelectron Reliab 70: 103–111. https://doi.org/10.1016/j.microrel.2017.01.008 doi: 10.1016/j.microrel.2017.01.008
![]() |
[7] |
Oterkus S, Madenci E, Oterkus E (2017) Fully coupled poroelastic formulation for fluid-filled fractures. Eng Geol 225: 19–28. https://doi.org/10.1016/j.enggeo.2017.02.001 doi: 10.1016/j.enggeo.2017.02.001
![]() |
[8] |
Nguyen CT, Oterkus S, Oterkus E, et al. (2021) Modelling of Eulerian incompressible fluid flows by using peridynamic differential operator. Ocean Eng 239: 109815. https://doi.org/10.1016/j.oceaneng.2021.109815 doi: 10.1016/j.oceaneng.2021.109815
![]() |
[9] |
Oterkus E, Madenci E, Nemeth MP (2007) Stress analysis of composite cylindrical shells with an elliptical cutout. J Mech Mater Struct 2: 695–727. http://dx.doi.org/10.2140/jomms.2007.2.695 doi: 10.2140/jomms.2007.2.695
![]() |
[10] |
Ren H, Zhuang X, Cai Y, et al. (2016) Dual-horizon peridynamics. Int J Numer Meth Engng 108: 1451–1476. https://doi.org/10.1002/nme.5257 doi: 10.1002/nme.5257
![]() |
[11] |
Wang B, Oterkus S, Oterkus E (2023) Derivation of dual horizon state-based peridynamics formulation based on Euler-Lagrange equation. Continuum Mech Therm 35: 841–861. https://doi.org/10.1007/s00161-020-00915-y doi: 10.1007/s00161-020-00915-y
![]() |
[12] |
Yang Z, Oterkus E, Oterkus S, et al. (2023) Double horizon peridynamics. Math Mech Solids 28: 2531–2549. https://doi.org/10.1016/j.cma.2016.12.031 doi: 10.1016/j.cma.2016.12.031
![]() |
[13] |
Ren H, Zhuang X, Oterkus E, et al. (2023) Nonlocal strong forms of thin plate, gradient elasticity, magneto-electro-elasticity and phase field fracture by nonlocal operator method. Eng Comput 39: 23–44. https://doi.org/10.1007/s00366-021-01502-8 doi: 10.1007/s00366-021-01502-8
![]() |
[14] | Madenci E, Barut A, Dorduncu M (2019) Peridynamic Differential Operator for Numerical Analysis, Cham: Springer. https://doi.org/10.1007/978-3-030-02647-9 |
[15] |
Lazopoulos KA, Sideridis E, Lazopoulos AK (2022) On Λ-fractional peridynamic mechanics. AIMS Mater Sci 9: 684–701. https://doi.org/10.3934/matersci.2022042 doi: 10.3934/matersci.2022042
![]() |
[16] |
Lazopoulos KA, Lazopoulos AK (2023) Beam bending and Λ-fractional analysis. AIMS Mater Sci 10: 604–617. https://doi.org/10.3934/matersci.2023034 doi: 10.3934/matersci.2023034
![]() |
[17] |
Friebertshä user KF, Wieners C, Weinberg K (2022) Dynamic fracture with continuum-kinematics-based peridynamics. AIMS Mater Sci 9: 791–807. https://doi.org/10.3934/matersci.2022049 doi: 10.3934/matersci.2022049
![]() |
[18] |
Altenbach H, Larin O, Naumenko K, et al. (2022) Elastic plate under low velocity impact: Classical continuum mechanics vs peridynamics analysis. AIMS Mater Sci 9: 702–718. https://doi.org/10.3934/matersci.2022043 doi: 10.3934/matersci.2022043
![]() |
[19] |
Oterkus E, Oterkus S (2024) Recent advances is peridynamic theory: A review. AIMS Mater Sci 11: 515–546. https://doi.org/10.3934/matersci.2024026 doi: 10.3934/matersci.2024026
![]() |
[20] |
Ramadan A (2023) Shear crack control for a reinforced concrete T-beam using coupled stochastic-multi-objective optimization methods. AIMS Mater Sci 10: 1077–1089. https://doi.org/10.3934/matersci.2023057 doi: 10.3934/matersci.2023057
![]() |