Research article Special Issues

Elastic plate under low velocity impact: Classical continuum mechanics vs peridynamics analysis

  • Received: 21 July 2022 Revised: 20 August 2022 Accepted: 29 August 2022 Published: 08 September 2022
  • The aim of this paper is to compare the classical continuum mechanics and the peridynamic models in the structural analysis of a monolithic glass plate subjected to ball drop. Governing equations are recalled in order to highlight the differences and basic features of both approaches. In this study the behavior of glass is assumed to be linear-elastic and damage processes are ignored. The generalized Hooke's law is assumed within the classical theory, while the linear peridynamic solid constitutive model is applied within the peridynamic analysis. Mechanical models for the ball drop simulation are discussed in detail. An emphasis is placed on the discretization including finite element mesh, peridynamic node lattice and time stepping, as well as appropriate constraints and contact conditions in both finite element and non-local peridynamics models. Deflections of the plate after the ball drop are presented as functions of time and the results based on the finite element and peridynamic analysis are compared. Good agreements between the deflection values in selected points of the plate as well as deflection fields at several time points indicate, that the model assumptions for the non-local peridynamic analysis including the horizon size, the short-range force contact settings and the support conditions are well suited. The developed peridynamics models can be applied in the future to analyze damage patterns in glass plates.

    Citation: Holm Altenbach, Oleksiy Larin, Konstantin Naumenko, Olha Sukhanova, Mathias Würkner. Elastic plate under low velocity impact: Classical continuum mechanics vs peridynamics analysis[J]. AIMS Materials Science, 2022, 9(5): 702-718. doi: 10.3934/matersci.2022043

    Related Papers:

  • The aim of this paper is to compare the classical continuum mechanics and the peridynamic models in the structural analysis of a monolithic glass plate subjected to ball drop. Governing equations are recalled in order to highlight the differences and basic features of both approaches. In this study the behavior of glass is assumed to be linear-elastic and damage processes are ignored. The generalized Hooke's law is assumed within the classical theory, while the linear peridynamic solid constitutive model is applied within the peridynamic analysis. Mechanical models for the ball drop simulation are discussed in detail. An emphasis is placed on the discretization including finite element mesh, peridynamic node lattice and time stepping, as well as appropriate constraints and contact conditions in both finite element and non-local peridynamics models. Deflections of the plate after the ball drop are presented as functions of time and the results based on the finite element and peridynamic analysis are compared. Good agreements between the deflection values in selected points of the plate as well as deflection fields at several time points indicate, that the model assumptions for the non-local peridynamic analysis including the horizon size, the short-range force contact settings and the support conditions are well suited. The developed peridynamics models can be applied in the future to analyze damage patterns in glass plates.



    加载中


    [1] Adámek V (2018) The limits of Timoshenko beam theory applied to impact problems of layered beams. Int J Mech Sci 145: 128–137. https://doi.org/10.1016/j.ijmecsci.2018.07.001. doi: 10.1016/j.ijmecsci.2018.07.001
    [2] Eisenträger J, Naumenko K, Altenbach H, et al. (2015) Application of the first-order shear deformation theory to the analysis of laminated glasses and photovoltaic panels. Int J Mech Sci 96: 163–171. https://doi.org/10.1016/j.ijmecsci.2018.07.001. doi: 10.1016/j.ijmecsci.2018.07.001
    [3] Koutsawa Y, Daya EM (2007) Static and free vibration analysis of laminated glass beam on viscoelastic supports. Int J Solids Struct 44: 8735–8750. https://doi.org/10.1016/j.ijsolstr.2007.07.009. doi: 10.1016/j.ijsolstr.2007.07.009
    [4] Schulze S, Pander M, Naumenko K, et al. (2012) Analysis of laminated glass beams for photovoltaic applications. Int J Solids Struct 49(15–16): 2027–2036. https://doi.org/10.1016/j.ijsolstr.2012.03.028. doi: 10.1016/j.ijsolstr.2012.03.028
    [5] Naumenko K, Eremeyev VA (2014) A layer-wise theory for laminated glass and photovoltaic panels. Compos Struct 112: 283–291. https://doi.org/10.1016/j.compstruct.2014.02.009. doi: 10.1016/j.compstruct.2014.02.009
    [6] Naumenko K, Eremeyev VA (2017) A layer-wise theory of shallow shells with thin soft core for laminated glass and photovoltaic applications. Compos Struct 178: 434–446. https://doi.org/10.1088/1475-7516/2017/07/007. doi: 10.1088/1475-7516/2017/07/007
    [7] Aßmus M, Naumenko K, Altenbach H (2016) A multiscale projection approach for the coupled global–local structural analysis of photovoltaic modules. Compos Struct 158: 340–358. https://doi.org/10.1088/1475-7516/2016/09/036. doi: 10.1088/1475-7516/2016/09/036
    [8] Eisenträger J, Naumenko K, Altenbach H, et al. (2015) A user-defined finite element for laminated glass panels and photovoltaic modules based on a layer-wise theory. Compos Struct 133: 265–277. https://doi.org/10.1016/j.compstruct.2015.07.049. doi: 10.1016/j.compstruct.2015.07.049
    [9] Li G, Cinefra M, Carrera E (2020) Coupled thermo-mechanical finite element models with node-dependent kinematics for multi-layered shell structures. Int J Mech Sci 171: 105379. https://doi.org/10.1016/j.ijmecsci.2019.105379. doi: 10.1016/j.ijmecsci.2019.105379
    [10] Janda T, Schmidt J, Hála P, et al. (2021) Reduced order models of elastic glass plate under low velocity impact. Comput Struct 244: 106430. https://doi.org/10.1016/j.compstruc.2020.106430. doi: 10.1016/j.compstruc.2020.106430
    [11] Pelfrene J, Kuntsche J, Van Dam S, et al. (2016) Critical assessment of the post-breakage performance of blast loaded laminated glazing: experiments and simulations. Int J Impact Eng 88: 61–71. https://doi.org/10.1016/j.ijimpeng.2015.09.008. doi: 10.1016/j.ijimpeng.2015.09.008
    [12] Vedrtnam A, Pawar S (2017) Laminated plate theories and fracture of laminated glass plate–a review. Eng Fract Mech 186: 316–330. https://doi.org/10.1016/j.engfracmech.2017.10.020. doi: 10.1016/j.engfracmech.2017.10.020
    [13] Murakami S (2012) Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture, Berlin: Springer.
    [14] Sun X, Khaleel MA (2004) Modeling of glass fracture damage using continuum damage mechanics–static spherical indentation. Int J Damage Mech 13(3): 263–285. https://doi.org/10.1177/1056789504042593. doi: 10.1177/1056789504042593
    [15] Wei J, Dharani L (2005) Fracture mechanics of laminated glass subjected to blast loading. Theor Appl Fract Mech 44(2): 157–167. https://doi.org/10.1016/j.tafmec.2005.06.004. doi: 10.1016/j.tafmec.2005.06.004
    [16] Wang Z, Fu J, Manes A (2021) Discrete fracture and size effect of aluminosilicate glass under flexural loading: Monte carlo simulations and experimental validation. Theor Appl Fract Mech 111: 102864. https://doi.org/10.1016/j.tafmec.2020.102864. doi: 10.1016/j.tafmec.2020.102864
    [17] Gao W, Liu X, Chen S, et al. (2020) A cohesive zone based de/fe coupling approach for interfacial debonding analysis of laminated glass. Theor Appl Fract Mech 108: 102668. https://doi.org/10.1016/j.tafmec.2020.102668. doi: 10.1016/j.tafmec.2020.102668
    [18] Altenbach H, Naumenko K (1997) Creep bending of thin-walled shells and plates by consideration of finite deflections. Comput Mech 19(6): 490–495. https://doi.org/10.1007/s004660050197. doi: 10.1007/s004660050197
    [19] Altenbach H, Kolarow G, Morachkovsky O, et al. (2000) On the accuracy of creep-damage predictions in thinwalled structures using the finite element method. Comput Mech 25(1): 87–98. https://doi.org/10.1007/s004660050018. doi: 10.1007/s004660050018
    [20] Peerlings RH, de Borst R, Brekelmans WM, et al. (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39: 3391–3403. https://doi.org/10.1007/978-94-011-5520-5-20. doi: 10.1007/978-94-011-5520-5-20
    [21] de Borst R, Verhoosel CV (2016) Gradient damage vs phase-field approaches for fracture: Similarities and differences. Comput Methods Appl Mech Eng 312: 78–94. https://doi.org/10.1016/j.cma.2016.05.015. doi: 10.1016/j.cma.2016.05.015
    [22] Linse T, Hennig P, Kästner M, et al. (2017) A convergence study of phase-field models for brittle fracture. Eng Fract Mech 184: 307–318. https://doi.org/10.1016/j.engfracmech.2017.09.013. doi: 10.1016/j.engfracmech.2017.09.013
    [23] Hansen-Dörr AC, de Borst R, Hennig P, et al. (2019) Phase-field modelling of interface failure in brittle materials. Comput Methods Appl Mech Eng 346: 25–42. https://doi.org/10.1016/j.cma.2018.11.020. doi: 10.1016/j.cma.2018.11.020
    [24] Rodriguez P, Ulloa J, Samaniego C, et al. (2018) A variational approach to the phase field modeling of brittle and ductile fracture. Int J Mech Sci 144: 502–517. https://doi.org/10.1016/j.ijmecsci.2018.05.009. doi: 10.1016/j.ijmecsci.2018.05.009
    [25] Schmidt J, Zemanová A, Zeman J, et al. (2020) Phase-field fracture modelling of thin monolithic and laminated glass plates under quasi-static bending. Materials 13(22): 5153. https://doi.org/10.3390/ma13225153. doi: 10.3390/ma13225153
    [26] Nase M, Rennert M, Naumenko K, et al. (2016) {Identifying traction–separation behavior of self-adhesive polymeric films from in situ digital images under T-peeling}. J Mech Phys Solids 91: 40–55. https://doi.org/10.1016/j.jmps.2016.03.001. doi: 10.1016/j.jmps.2016.03.001
    [27] Naumenko K, Bagheri B (2021) A direct approach to evaluate interaction forces between self-adhesive polymeric films subjected to T-peeling. Arch Appl Mech 91(2): 629–641. https://doi.org/10.1007/s00419-020-01834-9. doi: 10.1007/s00419-020-01834-9
    [28] Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Advs Appl Mech 44: 73–168. https://doi.org/10.1016/S0065-2156(10)44002-8. doi: 10.1016/S0065-2156(10)44002-8
    [29] Naumenko K, Pander M, Würkner M (2022) Damage patterns in float glass plates: Experiments and peridynamics analysis. Theor Appl Fract Mech 118: 103264. https://doi.org/10.1016/j.tafmec.2022.103264. doi: 10.1016/j.tafmec.2022.103264
    [30] Niazi S, Chen Z, Bobaru F (2021) Crack nucleation in brittle and quasi-brittle materials: A peridynamic analysis. Theor Appl Fract Mech 112: 102855. https://doi.org/10.1016/j.tafmec.2020.102855. doi: 10.1016/j.tafmec.2020.102855
    [31] Mehrmashhadi J, Bahadori M, Bobaru F (2020) On validating peridynamic models and a phase-field model for dynamic brittle fracture in glass. Eng Fract Mech 240: 107355. https://doi.org/10.1016/j.engfracmech.2020.107355. doi: 10.1016/j.engfracmech.2020.107355
    [32] Diana V, Ballarini R (2020) Crack kinking in isotropic and orthotropic micropolar peridynamic solids. Int J Solids Struct 196: 76–98. https://doi.org/10.1016/j.ijsolstr.2020.03.025. doi: 10.1016/j.ijsolstr.2020.03.025
    [33] Rahimi MN, Kefal A, Yildiz M, et al. (2020) An ordinary state-based peridynamic model for toughness enhancement of brittle materials through drilling stop-holes. Int J Mech Sci 182: 105773. https://doi.org/10.1016/j.ijmecsci.2020.105773. doi: 10.1016/j.ijmecsci.2020.105773
    [34] Zhang Y, Deng H, Deng J, et al. (2020) Peridynamic simulation of crack propagation of non-homogeneous brittle rock-like materials. Theor Appl Fract Mech 106: 102438. https://doi.org/10.1016/j.tafmec.2019.102438. doi: 10.1016/j.tafmec.2019.102438
    [35] Naumenko K, Eremeyev VA (2022) A non-linear direct peridynamics plate theory. Compos Struct 279: 114728. https://doi.org/10.1016/j.compstruct.2021.114728. doi: 10.1016/j.compstruct.2021.114728
    [36] Nguyen CT, Oterkus S (2021) Ordinary state-based peridynamics for geometrically nonlinear analysis of plates. Theor Appl Fract Mech 112: 102877. https://doi.org/10.1016/j.tafmec.2020.102877. doi: 10.1016/j.tafmec.2020.102877
    [37] Yang Z, Naumenko K, Altenbach H, et al. (2022) Some analytical solutions to peridynamic beam equations. ZAMM 2022: e202200132. https://doi.org/10.1002/zamm.202200132. doi: 10.1002/zamm.202200132
    [38] Belytschko T, Liu WK, Moran B, et al. (2014) Nonlinear Finite Elements for Continua and Structures, New York: Wiley.
    [39] Naumenko K, Altenbach H (2016) Modeling High Temperature Materials Behavior for Structural Analysis: Part I: Continuum Mechanics Foundations and Constitutive Models, Berlin: Springer.
    [40] Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1): 175–209. https://10.1016/S0022-5096(99)00029-0. doi: 10.1016/S0022-5096(99)00029-0
    [41] Silling SA (2016) Introduction to peridynamics, Handbook of Peridynamic Modeling, London: CRC Press, 63–98.
    [42] Javili A, Morasata R, Oterkus E, et al. (2019) Peridynamics review. Math Mech Solids 24(11): 3714–3739. https://doi.org/10.1177/1081286518803411. doi: 10.1177/1081286518803411
    [43] Silling SA, Epton M, Weckner O, et al. (2007) Peridynamic states and constitutive modeling. J Elast 88(2): 151–184. https://doi.org/10.1007/s10659-007-9125-1. doi: 10.1007/s10659-007-9125-1
    [44] Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18): 1526–1535. https://doi.org/10.1016/j.compstruc.2004.11.026. doi: 10.1016/j.compstruc.2004.11.026
    [45] Littlewood DJ, Parks ML, Mitchell JA, et al. (2013) The peridigm framework for peridynamic simulations, 12th U.S. National Congress on Computational Mechanics, United States: Sandia National Lab.
    [46] Littlewood D (2016) Roadmap for software implementation, Handbook of peridynamic modeling, London: CRC Press, 147–178.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2518) PDF downloads(228) Cited by(3)

Article outline

Figures and Tables

Figures(14)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog