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Abstract: The aim of this paper is to compare the classical continuum mechanics and the peridynamic
models in the structural analysis of a monolithic glass plate subjected to ball drop. Governing equations
are recalled in order to highlight the differences and basic features of both approaches. In this study the
behavior of glass is assumed to be linear-elastic and damage processes are ignored. The generalized
Hooke’s law is assumed within the classical theory, while the linear peridynamic solid constitutive
model is applied within the peridynamic analysis. Mechanical models for the ball drop simulation
are discussed in detail. An emphasis is placed on the discretization including finite element mesh,
peridynamic node lattice and time stepping, as well as appropriate constraints and contact conditions
in both finite element and non-local peridynamics models. Deflections of the plate after the ball
drop are presented as functions of time and the results based on the finite element and peridynamic
analysis are compared. Good agreements between the deflection values in selected points of the plate
as well as deflection fields at several time points indicate, that the model assumptions for the non-local
peridynamic analysis including the horizon size, the short-range force contact settings and the support
conditions are well suited. The developed peridynamics models can be applied in the future to analyze
damage patterns in glass plates.
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1. Introduction

Thin-walled structural glass panels are usually subjected to various quasi-static (snow weight, wind
pressure), dynamic (hailstorm, wind gust) and non-stationary thermal loadings. In order to investigate
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deformation and stress states in monolithic and laminated glass components under dynamic loadings
several approaches are developed. Glass plies and glass laminates with shear-stiff interlayers can be
analyzed with first order shear deformation theories of beams and plates [1, 2]. Layer-wise and zig-
zag theories are proposed for glass laminates with soft interlayers such as beams [3, 4], plates [5] and
shells [6]. User-defined finite elements for laminates with soft interlayers are developed and utilized
in [7–9]. To account for transverse normal deformation, stress concentrations and contact behavior
as a result of ball drop, three dimensional continuum mechanics theory and solid finite elements are
applied in [4, 10–12] among others. Critical zones of failure initiation in glass plies can be predicted
applying the continuum damage mechanics. Various scalar and tensor-valued damage state variables
for brittle materials are proposed in [13, 14] among others. To evaluate onset of failure propagation
of pre-cracked structures, fracture mechanics criteria, for example the the energy criterion [15] and
cohesive zone models [16, 17] are developed. For monolithic and laminated glass plates under impact
loading, the analysis of fracture process including the formation of damage patterns, as well as post-
fracture regimes after the failure of a glass ply are of practical importance. In the classical continuum
mechanics (CCM) the damage evolution equation is formulated in terms of the local characteristics
of the stress and strain state. With this approach damage initiation zones in a component can be well
predicted, e.g., [18, 19]. However, the consideration of fracture process leads in general to a loss
of well-posedness of the initial-boundary value problem of CCM [20], and as a result to a spurious
mesh dependence of finite element solutions. To regularize the finite element formulations, phase
field and gradient-enhanced damage theories were developed [21, 22]. Examples of crack propagation
and crack branching simulations with the phase field models are presented in [23, 24], among others.
The phase field theory is applied in [25] to analyze fracture in monolithic and laminated glass plates.
The results illustrate that zones of damage initiation are well predicted. However, the standard phase
field formulations fail to capture complex damage patterns, usually observed in float glass specimens.
In addition, non-local long-range interaction forces are of key importance in the analysis of fracture
phenomena [26, 27].

Peridynamics (PD) is a non-local theory which operates with long-range force interactions [28]. The
deformation gradient, its higher gradients and gradients of internal state variables are not required. In
addition to contact surface forces, long range bond force interactions are considered. Many studies of
complex fracture processes such as crack initiation [29, 30], crack branching [31], crack kinking [32]
and crack interaction with initial heterogeneities [33, 34] are recently performed with PD. For the
analysis of glass panels PD plate theories can be applied [35, 36].

Within the framework of PD, new parameters, such as the horizon are introduced. Furthermore,
the treatment of constraints, applied external forces and contact conditions requires special
considerations due to the non-locality. Several available analytical solutions to PD equations [37]
indicate that fictitious domains are required to apply constraints and loads. Therefore an important
step is to calibrate the PD model and to assess the adequacy of results.

The aim of this paper is to compare the classical continuum mechanics and the PD models as they
predict time-dependent deformation states in the monolithic glass plate after the ball drop. In our
study damage processes in glass will be ignored and the material behavior will be assumed to be linear
elastic. The paper is organized as follows. In Section 2 governing equations of classical continuum
mechanics and PD are presented in order to highlight the basic features and differences between the

AIMS Materials Science Volume 9, Issue 5, 702–718



704

approaches. In Secttion 3 mechanical models for the ball drop simulation are discussed in detail. An
emphasis is placed on the discretization including the finite element mesh, the PD node lattice and
the time stepping, as well as constraints and contact conditions in both finite element and PD models.
Results of analysis are presented in Section 4. Time-dependent deflections of the plate after the ball
drop will be analyzed in detail, and the results based on the finite element and PD analysis will be
compared.

2. Governing equations

Let X be the position vector for a point P in a reference configuration, and Xi, i = 1, 2, 3 are
the corresponding coordinates, as shown in Figure 1. The position vector of this point in the actual
configuration (designated by P′) is specified by x.
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Fig. 1 Three-dimensional solid with loadings and constraints

2 Governing equations

Let X be the position vector for a pointP in a reference configuration, andXi, i = 1, 2, 3 are the corresponding
coordinates, as shown in Fig. 1. The position vector of this point in the actual configuration (designated by
P′) is specified byx. The motion of the continuum is defined by the following mapping

x = ΦΦΦ(X, t) (1)

The basic problem of continuum mechanics is to compute the functionΦΦΦ for all vectorsX within the body
in the reference configuration, for the given time intervalt0 ≤ t ≤ tn as well as for given external loads and
temperature. The displacement vectoru is defined as follows (Fig. 1)

u = x − X (2)

In this section the governing equations of the classical continuum mechanics and peridynamics are presented
and compared.

2.1 Classical continuum mechanics

The classical continuum mechanics operates with local measures of deformation related to the differential
line, area and volume elements. The governing equations of continuum mechanics and finite element solu-
tion procedures are discussed in Altenbach (2018); Belytschko et al. (2014); Maugin (2013); Naumenko and
Altenbach (2016), among others. The directed line element in a differential neighborhood ofP′ in the actual
configuration is computed as follows

dx = F ··· dX, F = (∇∇∇x)T, ∇∇∇(. . .) = xi ∂(. . . )

∂Xi
, xi =

∂x

∂Xi
, i = 1, 2, 3 (3)

whereF is the deformation gradientxi is the local basis,xi is the dual basis in the actual configuration. For
many applications in the structural mechanics local strains and rotations can be assumed small. In this case
the deformation gradient takes the following form

F = I +∇∇∇u, ∇∇∇u = εεε + ϕϕϕ × I,

εεε =
1

2

[
∇∇∇u + (∇∇∇u)T

]
, ϕϕϕ = −1

2
∇∇∇× u,

(4)

whereεεε is the tensor of infinitesimal strains,ϕϕϕ is the vector of infinitesimal rotations andI is the second rank
unit tensor. From Eqs (4) the following compatibility condition for the strain tensor can be derived

∇∇∇××× (∇∇∇××× εεε)T = 000 (5)

Figure 1. Three-dimensional solid with loadings and constraints.

The motion of the continuum is defined by the following mapping

x = ΦΦΦ(X, t) (1)

The basic problem of continuum mechanics is to compute the function ΦΦΦ for all vectors X within the
body in the reference configuration, for the given time interval t0 ≤ t ≤ tn as well as for given external
loads and temperature. The displacement vector u is defined as follows Eq 2 (Figure 1)

u = x − X (2)

In this section the governing equations of the CCM and PD are presented and compared.

2.1. Classical continuum mechanics

Classical continuum mechanics operates with local measures of deformation related to the
differential line, area and volume elements. The governing equations of continuum mechanics and
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finite element solution procedures are discussed in [38, 39], among others. The directed line element
in a differential neighborhood of P′ in the actual configuration is computed as follows Eq 3

dx = F ··· dX, F = (∇∇∇x)T, ∇∇∇(. . .) = Gi∂(. . . )
∂Xi , Gi =

∂X
∂Xi , Gk ···Gi = δk

i , i, k = 1, 2, 3 (3)

where F is the deformation gradient Gi, i = 1, 2, 3 is the local basis, Gi is the corresponding dual basis
and δk

i is the Kronecker symbol. For many applications in the structural mechanics local strains and
rotations can be assumed small. In this case the deformation gradient takes the following form Eq 4

F = I +∇∇∇u, ∇∇∇u = εεε + ϕϕϕ × I,

εεε =
1
2

[
∇∇∇u + (∇∇∇u)T

]
, ϕϕϕ = −

1
2
∇∇∇ × u,

(4)

where εεε is the tensor of infinitesimal strains, ϕϕϕ is the vector of infinitesimal rotations and I is the second
rank unit tensor. From Eqs 4 the following compatibility condition for the strain tensor can be derived
form Eq 5:

∇∇∇××× (∇∇∇××× εεε)T = 000 (5)

Within the CCM only contact surface forces of interaction between any part of the solid and the
remainder are introduced. Applying the balance of linear momentum for a part of the solid and the
localization, the following equation can be established Eq 6:

ρü = ∇∇∇ ···σσσ + ρb, (6)

where ρ is the density, σσσ is the Cauchy stress tensor and b is the body force vector. The balance of
angular momentum results in Eq 7,

σσσ = σσσT (7)

The constitutive equation for the stress tensor can be assumed in the form of the generalized Hooke’s
law. For isotropic materials it takes the following form Eq 8,

σσσ = λ(tr εεε)I + 2µεεε, (8)

where λ and G are the Lamé’s parameters, Eq 9

µ =
E

2(1 + ν)
, G =

νE
(1 + ν)(1 − 2ν)

(9)

E is the Young’s modulus and ν is the Poisson’s ratio.
The differential Eqs 4,6 must be supplemented by the boundary conditions Eq 10:

uuu = ūuu, Xi ∈ Au,

σσσ ··· ννν = p̄pp, Xi ∈ Ap,
(10)

where ūuu is the given displacement vector, p̄pp is the vector of given surface forces and ννν is the outward unit
normal to Ap. The vectors p̄pp and ūuu can, in general, be functions of coordinates and time. Furthermore
the initial conditions for the displacement and velocity vectors must be specified.
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2.2. Peridynamics

PD is a nonlocal continuum theory, in which the material points are assumed to interact through
long-range forces [28, 40, 41]. For a recent review on applications of peridynamics we refer to [42].
Unlike the CCM, differential line elements are not introduced. Instead, the bond vector ξξξ with the finite
length connecting two material points X and X′ in the reference configuration is considered as follows
Eq 11:

ξξξ = X′ − X (11)

The PD deformation state Y〈ξξξ〉 for the bond vector in the actual configuration is defined by Eq 12:

Y[X, t]〈ξξξ〉 = y(X + ξξξ, t) − y(X, t), y = X + u (12)

The balance of linear momentum is formulated in the following integral form [28, 41]

ρü(X, t) =

∫
HX

(
T[X, t]〈X′ − X〉 − T[X′, t]〈X − X′〉

)
dVX′ + b, (13)

where T[X, t]〈X′ − X〉 is the PD force density state for the bond ξξξ. HX is a finite size spherical
neighborhood centered at X, with the radius δ which is called the horizon. The PD equation of motion
Eq13 can also be formulated as follows Eq 14 [28]

ρü =

∫
H

(
T[X, t]〈ξξξ〉 − T[X′, t]〈−ξξξ〉

)
dVξξξ + b (14)

The PD force density state is related to the deformation state by a constitutive equation. In our study
we apply the linear PD solid material model developed in Eqs 15,16 [43]

T〈ξξξ〉 = t〈ξξξ〉M〈ξξξ〉, M =
Y
|Y|

(15)

with
t〈ξξξ〉 =

3K
m
θω〈ξξξ〉|ξξξ| +

15G
m

ω〈ξξξ〉ed〈ξξξ〉, (16)

where ω〈ξξξ〉 is the influence function. In Eq 16 the bulk modulus K is defined by Eq 17,

K =
E

3(1 − 2ν)
(17)

The nonlocal dilatation θ, the weighted volume m and the deviatoric part of extension ed〈ξξξ〉 are defined
as follows

θ =
3
m

∫
H

(|Y〈ξξξ〉| − |ξξξ|)ω〈ξξξ〉|ξξξ| dVξξξ, m =

∫
H

ω〈ξξξ〉|ξξξ|2 dVξξξ, ed〈ξξξ〉 = |Y〈ξξξ〉| − |ξξξ| −
1
3
θ|ξξξ| (18)

For a numerical solution, the domain is descritized into a finite number of nodes with finite volumes
corresponding to each node. The integral in the right-hand side of Eq 13 is replaced by a finite sum
over the neighbors of the point x inside the horizon, while a time integration scheme is applied to solve
the initial value problem [44]. In our study we use the open-source code Peridigm. For a more detailed
overview on the numerical methods we refer to [44–46].
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3. Models for the ball drop simulation

In this study a drop of a solid steel ball with the mass of 1 kg with initial velocity of 8.85 m/s on a
glass plate is simulated. The square glass plate with the length l = 500 mm and the thickness h = 9.9
mm is considered, as shown in Figure 2.

5

The peridynamic force density state is related to the deformation state by a constitutive equation. In our study
we apply the linear peridynamic solid material model developed in Silling et al. (2007)

T〈ξξξ〉 = t〈ξξξ〉M〈ξξξ〉, M =
Y

|Y| (11)

with

t〈ξξξ〉 = 3K

m
θω〈ξξξ〉|ξξξ|+ 15G

m
ω〈ξξξ〉ed〈ξξξ〉, (12)

whereω〈ξξξ〉 is the influence function. In Eq. (12) the bulk modulusK is defined by

K =
E

3(1 − 2ν)

The nonlocal dilatationθ, the weighted volumem and the deviatoric part of extensioned〈ξξξ〉 are defined as
follows

θ =
3

m

∫

H
(|Y〈ξξξ〉| − |ξξξ|)ω〈ξξξ〉|ξξξ| dVξξξ , m =

∫

H
ω〈ξξξ〉|ξξξ|2 dVξξξ , ed〈ξξξ〉 = |Y〈ξξξ〉| − |ξξξ| − 1

3
θ|ξξξ| (13)

For a numerical solution, the domain is descritized into a finite number of nodes with finite volumes corre-
sponding to each node. The integral in the right-hand side ofEq. (10) is replaced by a finite sum over the
neighbors of the pointx inside the horizon, while a time integration scheme is applied to solve the initial
value problem (Silling and Askari 2005). In our study we use the open-source code Peridigm. For a more
detailed overview on the numerical methods we refer to Silling and Askari (2005); Littlewood et al. (2013);
Littlewood (2016).

3 Models for the ball drop simulation

In this study a drop of a solid steel ball with the mass of 1 kg with initial velocity of 8.85 m/s on a glass plate
is simulated. The square glass plate with the lengthl = 500 mm and the thicknessh = 9.9 mm is considered,
as shown in Fig. 2. The corresponding material properties ofsteel and glass are presented in Table 1

l
x

y

z

Fig. 2 Geometrical model of ball drop

Material Density,
ρ (kg/m3)

Young’s modulus,
E (GPa)

Poisson’s ratio,
ν

Steel 7850 210 0.3

Glass 2500 70 0.22

Table 1 Material properties

Figure 2. Geometrical model of ball drop.

The corresponding material properties of steel and glass are presented in Table 1.

Table 1. Material properties.

Material Density,
ρ (kg/m3)

Young’s modulus,
E (GPa)

Poisson’s ratio,
ν

Steel 7850 210 0.3
Glass 2500 70 0.22

3.1. Classical continuum mechanics model

Based on the CCM the impact of the ball on the glass plate is analyzed using the solid hexagonal
finite elements (FE) with 20 nodes and 3 degrees of freedom per node. The interaction of the ball and
the plate is considered as a one-way contact by the surface to surface algorithm. The resistance caused
by air during impact was neglected. The initial time step size for an explicit time integration is chosen
as 5×10−6 s.

For the studied plate several computations with different FE meshes were performed. For each FE
size maximum deflections were calculated to determine the computational error. The mesh with the
element size of 4 mm was chosen such that the total number of elements in the model is 67256. A
representative FE mesh is illustrated in Figure 3.
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6

3.1 Finite Element model

The impact of the ball on the glass plate is analyzed using thesolid hexagonal finite elements (FE) with 20
nodes and 3 degrees of freedom. The interaction of the ball and the plate is considered as a one-way contact
by the surface to surface algorithm. The resistance caused by air during impact was neglected. The initial time
step size for an explicit time integration is chosen as 5·10−6 s.
For the studied plate several computations with different FE meshes were performed. For each FE size max-
imum deflections were calculated to determine the computational error. The mesh with the element size of 4
mm was chosen such that the total number of elements in the model is 67256. A representative FE mesh is
illustrated in Fig. 3. To model the support frame, the area with the widthls = 10 mm on the bottom surface,
see Fig. 4 was created. The set of nodes on the frame was selected and deflections were set to zeros.

3.2 Peridynamic model

To generate the node lattice for the peridynamic model, the plate and the ball are discretized first with a FE
mesh generator. From the parent FE mesh the node lattice is created such that the nodes correspond to the
centroids of the finite elements. Figure 5 illustrates a parent FE mesh and the corresponding peridynamic
discretization. The total number of nodes is 557496 for the plate, 6084 for the ball and 6364 for the frame,
respectively.
Following the recommendation in Silling (2016) the horizonsize is specified asδ = 3.015∆x, where∆x
is the grid spacing. The parent finite element mesh is non-regular leading to the non-regularity of nodes

Fig. 3 Finite element mesh of the plate
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Fig. 4 Geometry and boundary conditions of the plate

Figure 3. Finite element mesh of the plate.

6

3.1 Finite Element model

The impact of the ball on the glass plate is analyzed using thesolid hexagonal finite elements (FE) with 20
nodes and 3 degrees of freedom. The interaction of the ball and the plate is considered as a one-way contact
by the surface to surface algorithm. The resistance caused by air during impact was neglected. The initial time
step size for an explicit time integration is chosen as 5·10−6 s.
For the studied plate several computations with different FE meshes were performed. For each FE size max-
imum deflections were calculated to determine the computational error. The mesh with the element size of 4
mm was chosen such that the total number of elements in the model is 67256. A representative FE mesh is
illustrated in Fig. 3. To model the support frame, the area with the widthls = 10 mm on the bottom surface,
see Fig. 4 was created. The set of nodes on the frame was selected and deflections were set to zeros.

3.2 Peridynamic model

To generate the node lattice for the peridynamic model, the plate and the ball are discretized first with a FE
mesh generator. From the parent FE mesh the node lattice is created such that the nodes correspond to the
centroids of the finite elements. Figure 5 illustrates a parent FE mesh and the corresponding peridynamic
discretization. The total number of nodes is 557496 for the plate, 6084 for the ball and 6364 for the frame,
respectively.
Following the recommendation in Silling (2016) the horizonsize is specified asδ = 3.015∆x, where∆x
is the grid spacing. The parent finite element mesh is non-regular leading to the non-regularity of nodes

Fig. 3 Finite element mesh of the plate

l

l

l

lsls
ls

v0

h

Fig. 4 Geometry and boundary conditions of the plateFigure 4. Geometry and boundary conditions of the plate.

To model the support frame, the area with the width ls = 10 mm on the bottom surface, see Figure
4 was created. The set of nodes on the frame was selected and deflections were set to zeros.

3.2. Peridynamic model

To generate the node lattice for the PD model, the plate and the ball are discretized first with a FE
mesh generator. From the parent FE mesh the node lattice is created such that the nodes correspond
to the centroids of the finite elements. Figure 5 illustrates a parent FE mesh and the corresponding PD
discretization.
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a) b)

Fig. 5 Discretization for peridynamics analysis. a) Parent finiteelement mesh, b) node lattice

361.48 Hz 736.03 Hz 1083.5 Hz 1315.7 Hz 1321.9 Hz

1647.2 Hz 2096.3 Hz 2190.3 Hz 2407.4 Hz 2417.2 Hz

Fig. 6 Eigenfrequencies and eigenmodes

distribution in the peridynamic lattice, see Fig. 5. The grid spacing∆x for the node set of the plate is specified
as an averaged value based on the radii of the inscribed circle and the circumscribed circle of an equilateral
triangle, where the edge length is equal to a given plane element size, and a given element size in plate
thickness direction. The horizon for the plate and for the frame is 6.96 mm while for the ball it takes the value
of 4.47 mm.
The contact between the ball and the plate is modeled applying the short-range force approach, as proposed
in Silling and Askari (2005); Littlewood (2016) and implemented in Peridigm software. Spring-like repulsive
forces of interaction are assumed for nodes of two bodies that are close to each another.
For the solution the explicit time-step method based on the central difference scheme to approximate the sec-
ond time derivative of the displacement vector, as implemented in Peridigm is used. Details of the method and
the critical time step estimation are presented in Silling and Askari (2005). The time step size in peridynamic
analysis was 10−7 s.

4 Results of analysis

Figure 6 shows the results of modal analysis for the considered plate according to the three-dimensional FE
analysis. The eigenfrequencies and eigenmodes of vibration modes are illustrated. Figure 7 illustrates the
displacement of the ball bottom node and the maximum deflection of the plate bottom central node as a

Figure 5. Discretization for PD analysis. (a) Parent finite element mesh, (b) node lattice.

The total number of nodes is 557496 for the plate, 6084 for the ball and 6364 for the frame,
respectively.

Following the recommendation in [41] the horizon size is specified as δ = 3.015∆x, where ∆x
is the grid spacing. The parent finite element mesh is non-regular leading to the non-regularity of
nodes distribution in the PD lattice, see Figure 5. The grid spacing ∆x for the node set of the plate is
specified as an averaged value based on the radii of the inscribed circle and the circumscribed circle
of an equilateral triangle, where the edge length is equal to a given plane element size, and a given
element size in plate thickness direction. The horizon for the plate and for the frame is 6.96 mm while
for the ball it takes the value of 4.47 mm.

The contact between the ball and the plate is modeled applying the short-range force approach, as
proposed in [44,46] and implemented in Peridigm software. Spring-like repulsive forces of interaction
are assumed for nodes of two bodies that are close to each another.

For the solution the explicit time-step method based on the central difference scheme to approximate
the second time derivative of the displacement vector, as implemented in Peridigm is used. Details of
the method and the critical time step estimation are presented in [44]. The time step size in PD analysis
was 10−7 s.

4. Results

4.1. CCM solution

Figure 6 illustrates the displacement of the ball bottom node and the maximum deflection of the
plate bottom central node as a function of time.
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function of time. The result for the contact pressure between the ball and the plate vs time is illustrated in Fig.
8. During the introduced time interval several peaks of the contact pressure are observable, Fig. 8. In addition,
regimes with zero contact pressure can be recognized. Theseregimes are explained by the vibration of the
plate followed the first impact. Figure 9 illustrates the maximum principal stress vs time at the central point of
the bottom surface of the plate. Experimental data for the strength of float glass are presented in Naumenko
et al. (2022). It is worth to note that differences between the surfaces of the float glass should be taken into
account, since one surface during manufacturing is in contact with tin (called tin side) and the other with air
(called air side). For the tin side the fracture stress valueestimated from ring bending tests is in the range
185.0. . .198.7 MPa while for the air side significantly higher stress values and much bigger scatter within the
range of 438.0. . .713.6 MPa are obtained in Naumenko et al. (2022). If the bottom side of the considered plate
is the tin side, then crack initiation in the midpoint of the bottom side is expected after the first stress peak, as
shown in Fig. 9. If the bottom side of the plate is the air side than the first impact peak would not lead to the

Figure 6. Displacement of the ball s and maximum deflection of the plate wmax vs time, finite
element solution.

The result for the contact pressure between the ball and the plate vs time is illustrated in Figure 7.
During the introduced time interval several peaks of the contact pressure are observable, Figure 7. In
addition, regimes with zero contact pressure can be recognized.
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is the tin side, then crack initiation in the midpoint of the bottom side is expected after the first stress peak, as
shown in Fig. 9. If the bottom side of the plate is the air side than the first impact peak would not lead to the

Figure 7. Contact pressure between the ball and the plate vs time, finite element solution.

These regimes are explained by the vibration of the plate followed the first impact. Figure 8
illustrates the maximum principal stress vs time at the central point of the bottom surface of the plate.
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Experimental data for the strength of float glass are presented in [29].It is worth to note that
differences between the surfaces of the float glass should be taken into account, since one surface
during manufacturing is in contact with tin (called tin side) and the other with air (called air side). For
the tin side the fracture stress value estimated from ring bending tests is in the range 185–198.7 MPa
while for the air side significantly higher stress values and much bigger scatter within the range of
438.0−713.6 MPa are obtained in [29]. If the bottom side of the considered plate is the tin side, then
crack initiation in the midpoint of the bottom side is expected after the first stress peak, as shown in
Figure 8. If the bottom side of the plate is the air side than the first impact peak would not lead to the
failure and cracks would be observable after the second peak if the lowest value of the fracture stress
in the scatter band is considered.
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failure and cracks would be observable after the second peakif the lowest value of the fracture stress in the
scatter band is considered.
In what follows let us compare the results of ball drop based on two approaches. To verify that the loading
on the plate was the same by using two approaches, Fig. 10 illustrates the displacement of the ball as a
function of time. The results based on the finite element and the peridynamic analysis agree well. Figures 11
and 12 illustrate the numerical results for the deflection intwo points of the bottom surface of the plate vs
time. Within the time interval0 ≤ t ≤ 0.002 s a very good agreement between the results of classical and
peridynamics solutions are observed. For the remaining time interval0.002 ≤ t ≤ 0.005 s a slight shift of
the peridynamic solution towards the time axis is visible. This can be explained by the different time step
procedures implemented inside ANSYS and Peridigm codes. Despite this slight discrepancy, details of plate
deflections in the course of vibrations after the ball drop agree well by two approaches. In addition, Figs. 13
– 14 illustrate the deflection fields at three time points. Good agreement between the deflection distributions

Figure 8. Maximum principal stress at the central bottom point of the plate vs time, finite
element solution.

4.2. PD vs CCM solutions

To verify that the loading on the plate was the same by using two approaches, Figure 9 illustrates
the displacement of the ball as a function of time. The results based on the finite element and the
PD analysis agree well. Figures 10,11 illustrate the numerical results for the deflection in two points
of the bottom surface of the plate vs time. Within the time interval 0 ≤ t ≤ 0.002 s a very good
agreement between the results of classical and PD solutions are observed. For the remaining time
interval 0.002 ≤ t ≤ 0.005 s a slight shift of the PD solution towards the time axis is visible.
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failure and cracks would be observable after the second peakif the lowest value of the fracture stress in the
scatter band is considered.
In what follows let us compare the results of ball drop based on two approaches. To verify that the loading
on the plate was the same by using two approaches, Fig. 10 illustrates the displacement of the ball as a
function of time. The results based on the finite element and the peridynamic analysis agree well. Figures 11
and 12 illustrate the numerical results for the deflection intwo points of the bottom surface of the plate vs
time. Within the time interval0 ≤ t ≤ 0.002 s a very good agreement between the results of classical and
peridynamics solutions are observed. For the remaining time interval0.002 ≤ t ≤ 0.005 s a slight shift of
the peridynamic solution towards the time axis is visible. This can be explained by the different time step
procedures implemented inside ANSYS and Peridigm codes. Despite this slight discrepancy, details of plate
deflections in the course of vibrations after the ball drop agree well by two approaches. In addition, Figs. 13
– 14 illustrate the deflection fields at three time points. Good agreement between the deflection distributions

Figure 9. Displacement of the ball vs time. Finite element and peridynamic solutions.
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obtained by FEM and peridynamics can be observed. This indicates that model settings for the non-local
analysis including the horizon size, the short-range forcecontact and the support conditions are well suited.

5 Conclusions

The aim of this paper was to compare the classical continuum mechanics and the non-local peridynamics ap-
proaches in modeling and simulation of the ball drop on the glass plate. The obtained results for the deflection
in selected points of the plate vs time as well as deflection fields of the plate at several time steps show very
good agreement. This indicates that the non-local theory iswell applicable to reproduce the displacement
fields. Let us note, that unlike the classical continuum mechanics, both damage and fracture patterns in glass
can be reproduced by peridynamics. To this end the constitutive equation with a damage parameter should be
calibrated based on experimental data on failure initiation and crack propagation in float glass. Peridynamic

Figure 10. Deflection of the central point in the top surface the plate vs time. Finite element
and peridynamic solutions.
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obtained by FEM and peridynamics can be observed. This indicates that model settings for the non-local
analysis including the horizon size, the short-range forcecontact and the support conditions are well suited.

5 Conclusions

The aim of this paper was to compare the classical continuum mechanics and the non-local peridynamics ap-
proaches in modeling and simulation of the ball drop on the glass plate. The obtained results for the deflection
in selected points of the plate vs time as well as deflection fields of the plate at several time steps show very
good agreement. This indicates that the non-local theory iswell applicable to reproduce the displacement
fields. Let us note, that unlike the classical continuum mechanics, both damage and fracture patterns in glass
can be reproduced by peridynamics. To this end the constitutive equation with a damage parameter should be
calibrated based on experimental data on failure initiation and crack propagation in float glass. Peridynamic

Figure 11. Deflection of the point B in the top surface of the plate vs time. Finite element
and peridynamic solutions.
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models of failure initiation and early stages of crack growth under quasi-static loading are discussed in Nau-
menko et al. (2022). Future studies should be related to the analysis of damage patterns in float glass under
low velocity impact.
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models of failure initiation and early stages of crack growth under quasi-static loading are discussed in Nau-
menko et al. (2022). Future studies should be related to the analysis of damage patterns in float glass under
low velocity impact.
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This can be explained by the different time step procedures implemented inside ANSYS and
Peridigm codes. Despite this slight discrepancy, details of plate deflections in the course of vibrations
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after the ball drop agree well by two approaches. In addition, Figures 12–14 illustrate the deflection
fields at three time points. Good agreement between the deflection distributions obtained by FEM and
PD can be observed. This indicates that model settings for the non-local analysis including the
horizon size, the short-range force contact and the support conditions are well suited.

5. Conclusions

The aim of this paper was to compare the CCM and the non-local PD approaches in modeling
and simulation of the ball drop on the glass plate. The obtained results for the deflection in selected
points of the plate vs time as well as deflection fields of the plate at several time steps show very good
agreement. This indicates that the non-local theory is well applicable to reproduce the displacement
fields. Let us note, that unlike the classical continuum mechanics, both damage and fracture patterns in
glass can be reproduced by PD. To this end the constitutive equation with a damage parameter should
be calibrated based on experimental data on failure initiation and crack propagation in float glass. PD
models of failure initiation and early stages of crack growth under quasi-static loading are discussed
in [29]. Future studies should be related to the analysis of damage patterns in float glass under low
velocity impact.
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