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Peridynamics (PD) is a new continuum mechanics formulation [1]. It was introduced mainly to 

overcome the limitations of classical continuum mechanics (CCM). PD uses integro-differential 

equations to represent equations of material points and equations that do not contain spatial derivatives. 

This brings an important advantage when analyzing cracks, since the displacement field is not 

continuous along the crack boundaries and spatial derivatives are not defined there. Moreover, PD 

formulations are non-local. Material points inside a finite interaction domain, called horizon, can 

interact with each other without being in physical contact [2]. This provides an opportunity to represent 

material behavior that cannot be properly defined in CCM. Therefore, it can be a suitable framework 

for multiscale analysis of materials [3,4]. In addition, PD can also be used for multiphysics analysis of 

materials and structures. PD formulations for various physical fields are currently available, including 

thermal [5], moisture diffusion [6], porous flow [7], or fluid flow applications [8]. As opposed to 

widely used finite element method and semi-analytical approaches [9], PD equations are usually solved 

numerically based on one meshless approach. To improve computational time, different methods such 

as dual-horizon peridynamics [10,11] or double-horizon peridynamics [12] can be utilized. Several 

non-local operators have also been introduced in the literature [13,14]. 

The aim of this special issue is to provide a platform to present some new advances in 

peridynamics and its applications. Six journal papers were published as part of this special issue. 

Lazopoulos et al. [15] presented Λ-fractional peridynamic mechanics, which can be suitable for 

different topologies and describe various inhomogeneities in various materials with more realistic rules. 

In another study, Lazopoulos and Lazopoulos [16] considered the Λ-fractional beam bending problem 

by allowing elastic curves with non-smooth curvatures. Friebertshäuser et al. [17] used a continuum 

kinematics–based peridynamics approach to investigate dynamic fracture including impact damage 
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and crack initiation. Altenbach et al. [18] compared CCM and PD models for the structural analysis of 

a monolithic glass plate subjected to ball drop. A comprehensive review of recent advances in peridynamic 

theory was given by Oterkus and Oterkus [19]. Finally, Ramadan [20] presented multi-objective 

optimization and numerical simulations to optimize the shear strength of a reinforced concrete T beam. 
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