Review

Biochar in cementitious material—A review on physical, chemical, mechanical, and durability properties

  • Received: 15 December 2022 Revised: 21 March 2023 Accepted: 09 April 2023 Published: 06 May 2023
  • Ordinary Portland Cement (OPC) is a crucial building component and a valuable strategic resource. The production of cement accounts for 5% to 10% of global carbon dioxide (CO2) emissions. Over the years, many researchers have been studying ways to reduce the amount of CO2 in the atmosphere caused by cement production. Due to its properties, biochar is found to be an interesting material to be utilised in the construction industry due to its effectiveness in CO2 sequestration. Biochar is a solid residue created by the thermal breakdown of biomass at moderate temperatures (350–700 ℃) without oxygen or with a small amount of oxygen, sometimes known as bio-carbon. Biochar has a wide range of uses, including those for heating and electricity generation, cleaning flue gases, metallurgy, animal husbandry, agriculture, construction materials, and even medicine. The objective of this paper is to review the potential of biochar as a cementitious material by evaluating its physical, chemical, mechanical, and durability properties. Using biochar as a cementitious material makes it possible to conclude that cement production will be reduced over time by partial replacement, which will also promote and encourage sustainable development in the future.

    Citation: Pravina Kamini G., Kong Fah Tee, Jolius Gimbun, Siew Choo Chin. Biochar in cementitious material—A review on physical, chemical, mechanical, and durability properties[J]. AIMS Materials Science, 2023, 10(3): 405-425. doi: 10.3934/matersci.2023022

    Related Papers:

  • Ordinary Portland Cement (OPC) is a crucial building component and a valuable strategic resource. The production of cement accounts for 5% to 10% of global carbon dioxide (CO2) emissions. Over the years, many researchers have been studying ways to reduce the amount of CO2 in the atmosphere caused by cement production. Due to its properties, biochar is found to be an interesting material to be utilised in the construction industry due to its effectiveness in CO2 sequestration. Biochar is a solid residue created by the thermal breakdown of biomass at moderate temperatures (350–700 ℃) without oxygen or with a small amount of oxygen, sometimes known as bio-carbon. Biochar has a wide range of uses, including those for heating and electricity generation, cleaning flue gases, metallurgy, animal husbandry, agriculture, construction materials, and even medicine. The objective of this paper is to review the potential of biochar as a cementitious material by evaluating its physical, chemical, mechanical, and durability properties. Using biochar as a cementitious material makes it possible to conclude that cement production will be reduced over time by partial replacement, which will also promote and encourage sustainable development in the future.



    加载中


    [1] Imbabi MS, Carrigan C, McKenna S (2012) Trends and developments in green cement and concrete technology. Int J Sustain Built Environ 1: 194–216. https://doi:10.1016/J.ijsbe.2013.05.001. doi: 10.1016/J.ijsbe.2013.05.001
    [2] Dunuweera SP, Rajapakse RMG (2018) Cement types, composition, uses and advantages of nanocement, environmental impact on cement production, and possible solutions. Adv Mater Sci 2018: 4158682. https://doi:10.1155/2018/4158682 doi: 10.1155/2018/4158682
    [3] Czigler T, Reiter S, Schulze P, et al. (2020) Laying the foundation for zero-carbon cement. Available from: https://www.mckinsey.com/industries/chemicals/our-insights/laying-the-foundation-for-zero-carbon-cement#.
    [4] Shanks W, Dunant CF, Drewniok MP, et al. (2019) How much cement can we do without? Lessons from cement material flows in the UK. Resour Conserv Recycl 141: 441–454. https://doi:10.1016/J.Resconrec.2018.11.002 doi: 10.1016/J.Resconrec.2018.11.002
    [5] Miller SA, Myers RJ (2019) Environmental impacts of alternative cement binders. Environ Sci Technol 54: 677–686. https://doi:10.1021/acs.est.9b05550 doi: 10.1021/acs.est.9b05550
    [6] United States Environmental Protection Agency (EPA), 2019. Available from: https://www.epa.gov.
    [7] Fennell PS, Davis SJ, Mohammed A (2021) Decarbonizing cement production. Joule 5: 1305–1311. https://doi:10.1016/J.Joule.2021.04.011 doi: 10.1016/J.Joule.2021.04.011
    [8] Ishak SA, Hashim H (2015) Low carbon measures for cement plant—a review. J Clean Prod 103: 260–274. https://doi:10.1016/j.jclepro.2014.11.003 doi: 10.1016/j.jclepro.2014.11.003
    [9] Ahmed AK, Ahmad MI, Yusup Y (2020) Issues, impacts, and mitigations of carbon dioxide emissions in the building sector. Sustainability 12: 7427. https://doi:10.3390/SU12187427. doi: 10.3390/SU12187427
    [10] Klufallah MM, Nuruddin MF, Khamidi MF, et al. (2014) Assessment of carbon emission reduction for buildings projects in Malaysia-A comparative analysis. E3S Web Conf 3: 01016. https://doi:10.1051/E3SCONF/20140301016 doi: 10.1051/E3SCONF/20140301016
    [11] Yoro KO, Daramola MO (2020) CO2 emission sources, greenhouse gases, and the global warming effect, Advances in Carbon Capture: Methods, Technologies and Applications, Woodhead Publishing, 3–28. https://doi:10.1016/B978-0-12-819657-1.00001-32
    [12] Ahmed M, Bashar I, Alam ST, el al. (2021) An overview of Asian cement industry: Environmental impacts, research methodologies and mitigation measures. Sustain Prod Consum 28: 1018–1039. https://doi:10.1016/j.spc.2021.07.024 doi: 10.1016/j.spc.2021.07.024
    [13] Ishak SA, Hashim H (2015) Low carbon measures for cement plant—a review. J Clean Prod 103: 260–274. https://doi:10.1016/j.jclepro.2014.11.003 doi: 10.1016/j.jclepro.2014.11.003
    [14] World Health Organization (WHO), 2022. Available from: https://www.who.int/health-topics/air-pollution.
    [15] Mensah RA, Shanmugam V, Narayanan S, el al. (2021) Biochar-added cementitious materials—A review on mechanical, thermal, and environmental properties. Sustainability 13: 9336. https://doi:10.3390/su13169336 doi: 10.3390/su13169336
    [16] Tun TZ, Bonnet S, Gheewala SH (2021) Emission reduction pathways for a sustainable cement industry in Myanmar. Sustain Prod Consum 27: 449–461. https://doi:10.1016/j.spc.2021.01.016 doi: 10.1016/j.spc.2021.01.016
    [17] Hasanbeigi A, Morrow W, Masanet E, et al. (2013) Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China. Energy Policy 57: 287–297. https://doi:10.1016/j.enpol.2013.01.053 doi: 10.1016/j.enpol.2013.01.053
    [18] Su TL, Chan DYL, Hung CY, et al. (2013) The status of energy conservation in Taiwan's cement industry. Energy Policy 60: 481–486. https://doi:10.1016/j.enpol.2013.04.002 doi: 10.1016/j.enpol.2013.04.002
    [19] Benhelal E, Zahedi G, Shamsaei E, et al. (2013) Global strategies and potentials to curb CO2 emissions in cement industry. J Clean Prod 51: 142–161. https://doi:10.1016/j.jclepro.2012.10.049 doi: 10.1016/j.jclepro.2012.10.049
    [20] Wang S, Han X (2012) Sustainable cement production with improved energy efficiency and emerging CO2 mitigation. ASEC 2: 123–128. https://doi:10.4236/aces.2012.21015. doi: 10.4236/aces.2012.21015
    [21] Schneider M, Romer M, Tschudin M, et al. (2011) Sustainable cement production—present and future. Cem Concr Res 41: 642–650. https://doi:10.1016/j.cemconres.2011.03.019 doi: 10.1016/j.cemconres.2011.03.019
    [22] Patrizio P, Fajardy M, Bui M, et al. (2021) CO2 mitigation or removal: The optimal uses of biomass in energy system decarbonization. IScience 24: 102765. https://doi:10.1016/J.ISCI.2021.102765. doi: 10.1016/J.ISCI.2021.102765
    [23] Chew, KW, Chia SR, Chia WY, et al. (2021) Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy. Environ Pollut 278: 116836. https://doi:10.1016/j.envpol.2021.116836 doi: 10.1016/j.envpol.2021.116836
    [24] Kumar A, Kumar K, Kaushik N, et al. (2010) Renewable energy in India: current status and future potentials. Renew Sust Energ Rev 14: 2434–2442. https://doi:10.1016/J.RSER.2010.04.003 doi: 10.1016/J.RSER.2010.04.003
    [25] Jacobson MZ (2014) Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. J Geophys Res Atmos 119: 8980–9002. https://doi:10.1002/2014JD021861 doi: 10.1002/2014JD021861
    [26] Chen J, Li C, Ristovski Z, et al. (2017) A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci Total Environ 579: 1000–1034. https://doi:10.1016/j.scitotenv.2016.11.025 doi: 10.1016/j.scitotenv.2016.11.025
    [27] Palanivelu K, Ramachandran A, Raghavan V (2021) Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—a review. Biomass Convers Biorefin 1: 2247–2267. https://doi:10.1007/s13399-020-00604-5 doi: 10.1007/s13399-020-00604-5
    [28] Thomas BS, Yang J, Mo KH, et al. (2021). Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review. J Build Eng 40: 102332. https://doi:10.1016/j.jobe.2021.102332 doi: 10.1016/j.jobe.2021.102332
    [29] Gunarathne V, Ashiq A, Ramanayaka S, et al. (2019) Biochar from municipal solid waste for resource recovery and pollution remediation. Environ Chem Lett 17: 1225–1235. https://doi:10.1007/S10311-019-00866-0 doi: 10.1007/S10311-019-00866-0
    [30] Liu WJ, Jiang H, Yu HQ (2019) Emerging applications of biochar-based materials for energy storage and conversion. Energy Environ Sci 12: 1751–1779. https://doi:10.1039/C9EE00206E doi: 10.1039/C9EE00206E
    [31] Baidoo I, Sarpong DB, Bolwig S, et al. (2016) Biochar amended soils and crop productivity: A critical and meta-analysis of literature. Int J Sustain Dev 5: 414–432. Available from: www.isdsnet.com/ijds.
    [32] Woolf D, Amonette JE, Street-Perrott FA, et al. (2010). Sustainable biochar to mitigate global climate change. Nat Commun 1: 1–9. https://doi:10.1038/NCOMMS1053 doi: 10.1038/NCOMMS1053
    [33] Pariyar P, Kumari K, Jain MK, et al. (2020) Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci Total Environ 713: 136433. https://doi:10.1016/j.scitotenv.2019.136433 doi: 10.1016/j.scitotenv.2019.136433
    [34] Kim S, Lee Y, Lin KYA, et al. (2020) The valorization of food waste via pyrolysis. J Clean Prod 259: 120816. https://doi:10.1016/J.JCLEPRO.2020.120816 doi: 10.1016/J.JCLEPRO.2020.120816
    [35] Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Source 24: 471–482. https://doi:10.1080/00908310252889979 doi: 10.1080/00908310252889979
    [36] Maschio G, Koufopanos C, Lucchesi A (1992) Pyrolysis, a promising route for biomass utilization. Bioresour Technol (United Kingdom) 42: 219–231. https://doi.org/10.1016/0960-8524(92)90025-S doi: 10.1016/0960-8524(92)90025-S
    [37] Li Y, Xing B, Ding Y, et al. (2020) A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresour Technol 312: 123614. https://doi:10.1016/J.BIORTECH.2020.123614 doi: 10.1016/J.BIORTECH.2020.123614
    [38] Leng L, Huang H, Li H, et al. (2019) Biochar stability assessment methods: a review. Sci Total Environ 647: 210–222. https://doi: 10.1016/j.scitotenv.2018.07.402 doi: 10.1016/j.scitotenv.2018.07.402
    [39] Leng L, Huang H (2018) An overview of the effect of pyrolysis process parameters on biochar stability. Bioresour Technol 270: 627–642. https://doi:10.1016/j.biortech.2018.09.030 doi: 10.1016/j.biortech.2018.09.030
    [40] Tang J, Zhu, W, Kookana R, et al. (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116: 653–659. https://doi:10.1016/j.jbiosc.2013.05.035 doi: 10.1016/j.jbiosc.2013.05.035
    [41] Ahmad MR, Chen B, Duan H (2020) Improvement effect of pyrolyzed agro-food biochar on the properties of magnesium phosphate cement. Sci Total Environ 718: 137422. https://doi:10.1016/J.SCITOTENV.2020.137422 doi: 10.1016/J.SCITOTENV.2020.137422
    [42] Bhatia SK, Palai AK, Kumar A, et al. (2021) Trends in renewable energy production employing biomass-based biochar. Bioresour Technol 340: 125644. https://doi:10.1016/J.BIORTECH.2021.125644 doi: 10.1016/J.BIORTECH.2021.125644
    [43] Weber K, Quicker P (2018) Properties of biochar. Fuel 217: 240–261. https://doi:10.1016/j.fuel.2017.12.054 doi: 10.1016/j.fuel.2017.12.054
    [44] Yang S, Wi S, Lee J, et al. (2019) Biochar-red clay composites for energy efficiency as eco-friendly building materials: Thermal and mechanical performance. J Hazard Mater 373: 844–855. https://doi:10.1016/J.JHAZMAT.2019.03.079 doi: 10.1016/J.JHAZMAT.2019.03.079
    [45] Sirico A, Bernardi P, Sciancalepore C et al. (2021) Biochar from wood waste as additive for structural concrete. Constr Build Mater 303: 124500. Available from: https://doi:10.1016/j.conbuildmat.2021.124500 doi: 10.1016/j.conbuildmat.2021.124500
    [46] Turovaara M (2022) The effect of high-ratio biochar replacement in concrete on performance properties: Experimental study of biochar addition to concrete mixture[Master's Thesis]. Luleå University of Technology, Sweden.
    [47] Corwin CH (2008) Laboratory manual for Introductory Chemistry: Concepts and Connections, Pearson Higher Ed.
    [48] Lehmann J, Joseph S (2015) Biochar for Environmental Management: Science, Technology and Implementation, Routledge. https://doi:10.4324/9781849770552
    [49] Brewer C, Chuang VJ, Masiello CA, et al. (2014) New approaches to measuring biochar density and porosity. Biomass Bioenerg 66: 176–185. https://doi:10.1016/j.biombioe.2014.03.059 doi: 10.1016/j.biombioe.2014.03.059
    [50] Gupta S, Kashani A (2021) Utilization of biochar from unwashed peanut shell in cementitious building materials—Effect on early age properties and environmental benefits. Fuel Process Technol 218: 106841. https://doi:10.1016/j.fuproc.2021.106841 doi: 10.1016/j.fuproc.2021.106841
    [51] Blanco-Canqui H (2017) Biochar and soil physical properties. Soil Sci Soc Am J 81: 687–711. https://doi:10.2136/SSSAJ2017.01.0017 doi: 10.2136/SSSAJ2017.01.0017
    [52] Werdin J, Fletcher TD, Rayner JP, et al. (2020) Biochar made from low density wood has greater plant available water than biochar made from high density wood. Sci Total Environ 705: 135856. https://doi:10.1016/J.SCITOTENV.2019.135856 doi: 10.1016/J.SCITOTENV.2019.135856
    [53] Leng L, Xiong Q, Yang L, et al. (2021) An overview on engineering the surface area and porosity of biochar. Sci Total Environ 763: 144204. https://doi:10.1016/j.scitotenv.2020.144204 doi: 10.1016/j.scitotenv.2020.144204
    [54] Muthukrishnan S, Gupta S, Kua HW (2019) Application of rice husk biochar and thermally treated low silica rice husk ash to improve physical properties of cement mortar. Theor Appl Fract Mech 104: 102376. https://doi:10.1016/j.tafmec.2019.102376 doi: 10.1016/j.tafmec.2019.102376
    [55] Gupta S, Kua HW, Dai Pang S (2018) Biochar-mortar composite: Manufacturing, evaluation of physical properties and economic viability. Constr Build Mater 167: 874–889. https://doi:10.1016/j.conbuildmat.2018.02.104 doi: 10.1016/j.conbuildmat.2018.02.104
    [56] Gupta S, Kua HW, Koh HJ (2018) Application of biochar from food and wood waste as green admixture for cement mortar. Sci Total Environ 619: 419–435. https://doi:10.1016/J.scitotenv.2017.11.044 doi: 10.1016/J.scitotenv.2017.11.044
    [57] Wijitkosum S, Jiwnok P (2019) Elemental composition of biochar obtained from agricultural waste for soil amendment and carbon sequestration. App Sci 9: 3980. https://doi:10.3390/app9193980 doi: 10.3390/app9193980
    [58] Liu W, Li K, Xu S (2022) Utilizing bamboo biochar in cement mortar as a bio-modifier to improve the compressive strength and crack-resistance fracture ability. Constr Build Mater 327: 126917. https://doi:10.1016/j.conbuildmat.2022.126917 doi: 10.1016/j.conbuildmat.2022.126917
    [59] Graber ER, Tsechansky L, Gerstl Z, et al. (2012) High surface area biochar negatively impacts herbicide efficacy. Plant Soil 353: 95–106. https://doi:10.1007/s11104-011-1012-7 doi: 10.1007/s11104-011-1012-7
    [60] Peterson SC, Jackson MA, Kim S, et al (2012) Increasing biochar surface area: Optimization of ball milling parameters. Powder Technol 228: 115–120. https://doi:10.1016/J.POWTEC.2012.05.005 doi: 10.1016/J.POWTEC.2012.05.005
    [61] Xu D, Cao J, Li Y, et al. (2019) Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: A case study on ammonium adsorption capacity. Waste Manage 87: 652–660. https://doi:10.1016/j.wasman.2019.02.049 doi: 10.1016/j.wasman.2019.02.049
    [62] Wani I, Sharma A, Kushvaha V, et al. (2020). Effect of pH, volatile content, and pyrolysis conditions on surface area and O/C and H/C ratios of biochar: towards understanding performance of biochar using simplified approach. J Hazard Toxic Radioact Waste 24: 04020048. https://doi:10.1061/(asce)hz.2153-5515.0000545 doi: 10.1061/(asce)hz.2153-5515.0000545
    [63] Gao Y, Zhang Y, Li A, et al. (2018) Facile synthesis of high-surface area mesoporous biochar for energy storage via in-situ template strategy. Mater Lett 230: 183–186. https://doi:10.1016/j.matlet.2018.07.106 doi: 10.1016/j.matlet.2018.07.106
    [64] Chia CH, Gong B, Joseph SD, et al. (2012) Imaging of mineral-enriched biochar by FTIR, Raman and SEM–EDX. Vib Spectrosc 62: 248–257. https://doi:10.1016/J.VIBSPEC.2012.06.006 doi: 10.1016/J.VIBSPEC.2012.06.006
    [65] Danish A, Mosaberpanah MA, Salim MU, et al. (2021) Reusing biochar as a filler or cement replacement material in cementitious composites: A review. Constr Build Mater 300: 124295. https://doi.10.1016/j.conbuildmat.2021.124295
    [66] Khiari B, Ghouma I, Ferjani AI, et al. (2020) Kenaf stems: Thermal characterization and conversion for biofuel and biochar production. Fuel 262: 116654. https://doi.10.1016/j.fuel.2019.116654
    [67] Gupta S, Krishnan P, Kashani A, et al. (2020) Application of biochar from coconut and wood waste to reduce shrinkage and improve physical properties of silica fume-cement mortar. Constr Build Mater 262: 120688. https://doi:10.1016/j.conbuildmat.2020.120688 doi: 10.1016/j.conbuildmat.2020.120688
    [68] Elnour AY, Alghyamah AA, Shaikh HM, et al. (2019) Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites. Appl Sci 9: 1149. https://doi.org/10.3390/app9061149. doi: 10.3390/app9061149
    [69] Gupta S, Kua HW, Koh HJ (2018) Application of biochar from food and wood waste as green admixture for cement mortar. Sci Total Environ 619: 419–435. https://doi:10.1016/j.scitotenv.2017.11.044 doi: 10.1016/j.scitotenv.2017.11.044
    [70] Ahmad MR, Chen B, Duan H (2020) Improvement effect of pyrolyzed agro-food biochar on the properties of magnesium phosphate cement. Sci Total Environ 718: 137422. https://doi:10.1016/j.scitotenv.2020.137422 doi: 10.1016/j.scitotenv.2020.137422
    [71] Zeidabadi ZA, Bakhtiari S, Abbaslou H, et al. (2018) Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials. Constr Build Mater 181: 301–308. https://doi:10.1016/j.conbuildmat.2018.05.271 doi: 10.1016/j.conbuildmat.2018.05.271
    [72] Maljaee H, Madadi R, Paiva H, et al. (2021) Sustainable lightweight mortar using biochar as sand replacement. Eur J Environ Civ Eng 26: 8263–8279. https://doi:10.1080/19648189.2021.2021998 doi: 10.1080/19648189.2021.2021998
    [73] Maljaee H, Paiva H, Madadi R, et al. (2021) Effect of cement partial substitution by waste-based biochar in mortars properties. Constr Build Mater 301: 124074. https://doi:10.1016/j.conbuildmat.2021.124074 doi: 10.1016/j.conbuildmat.2021.124074
    [74] Ahmed MB, Zhou JL, Ngo HH, et al. (2016) Insight into biochar properties and its cost analysis. Biomass Bioenerg 84: 76–86. https://doi:10.1016/j.biombioe.2015.11.002 doi: 10.1016/j.biombioe.2015.11.002
    [75] Li C, Hayashi JI, Sun Y, et al. (2021) Impact of heating rates on the evolution of function groups of the biochar from lignin pyrolysis. J Anal Appl Pyrolysis 155: 105031. https://doi:10.1016/J.JAAP.2021.105031 doi: 10.1016/J.JAAP.2021.105031
    [76] Claoston N, Samsuri AW, Ahmad Husni MH, et al. (2014) Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Manag Res 32: 331–339. https://doi:10.1177/0734242X14525822 doi: 10.1177/0734242X14525822
    [77] Zhang Y, Ma Z, Zhang Q, et al. (2017) Comparison of the physicochemical characteristics of bio-char pyrolyzed from moso bamboo and rice husk with different pyrolysis temperatures. BioResources 12: 4652–4669. https://doi:10.15376/BIORES.12.3.4652-4669 doi: 10.15376/BIORES.12.3.4652-4669
    [78] Crombie K, Mašek O, Sohi SP, et al. (2013) The effect of pyrolysis conditions on biochar stability as determined by three methods. Gcb Bioenergy 5: 122–131. https://doi:10.1111/GCBB.12030 doi: 10.1111/GCBB.12030
    [79] He M, Xu Z, Sun Y, et al. (2021) Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar. Bioresource Technol 341: 125811. https://doi:10.1016/J.biortech.2021.125811 doi: 10.1016/J.biortech.2021.125811
    [80] Ye L, Zhang J, Zhao J, et al. (2015) Properties of biochar obtained from pyrolysis of bamboo shoot shell. J Anal Appl Pyrolysis 114: 172–178. https://doi: 10.1016/j.jaap.2015.05.016. doi: 10.1016/j.jaap.2015.05.016
    [81] Liu Z, Fei B, Jiang Z (2014) Combustion characteristics of bamboo-biochars. Bioresource Technol 167: 94–99. https://doi:10.1016/j.biortech.2014.05.023 doi: 10.1016/j.biortech.2014.05.023
    [82] Al-Wabel MI, Al-Omran A, El-Naggar AH, et al. (2013) Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technol 131: 374–379. https://doi.org/10.1016/j.biortech.2012.12.165 doi: 10.1016/j.biortech.2012.12.165
    [83] Akhtar A, Sarmah AK (2018) Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties. Sci Total Environ 616: 408–416. https://doi:10.1016/j.scitotenv.2017.10.319 doi: 10.1016/j.scitotenv.2017.10.319
    [84] Zhao C, Liu X, Chen A, et al. (2020) Characteristics evaluation of bio-char produced by pyrolysis from waste hazelnut shell at various temperatures. Energ Source Part A 1–11. https://doi.org/10.1080/15567036.2020.1754530 doi: 10.1080/15567036.2020.1754530
    [85] Gupta S, Kua HW (2020) Application of rice husk biochar as filler in cenosphere modified mortar: Preparation, characterization and performance under elevated temperature. Constr Build Mater 253: 119083. https://doi:10.1016/j.conbuildmat.2020.119083 doi: 10.1016/j.conbuildmat.2020.119083
    [86] ASTM International (2003) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM 619-03.
    [87] Zeidabadi ZA, Bakhtiari S, Abbaslou H, et al. (2018) Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials. Constr Build Mater 181: 301–308. https://doi:10.1016/j.conbuildmat.2018.05.271 doi: 10.1016/j.conbuildmat.2018.05.271
    [88] ASTM International (2019) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM 619-19.
    [89] Jeon J, Kim HI, Park JH, et al. (2021) Evaluation of thermal properties and acetaldehyde adsorption performance of sustainable composites using waste wood and biochar. Environ Res 196: 110910. https://doi:10.1016/j.envres.2021.110910 doi: 10.1016/j.envres.2021.110910
    [90] Ngo T, Khudur LS, Hakeem IG, et al. (2022) Wood biochar enhances the valorisation of the anaerobic digestion of chicken manure. Clean Technol Environ Policy 4: 420–439. https://doi:10.3390/cleantechnol4020026 doi: 10.3390/cleantechnol4020026
    [91] Dixit A, Gupta S, Dai Pang S, et al. (2019) Waste valorisation using biochar for cement replacement and internal curing in ultra-high performance concrete. J Clean Prod 238: 117876. https://doi.org/10.1016/j.jclepro.2019.117876 doi: 10.1016/j.jclepro.2019.117876
    [92] Rehrah D, Bansode RR, Hassan O, et al. (2016) Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment. J Anal Appl Pyrolysis 118: 42–53. https://doi:10.1016/J.JAAP.2015.12.022. doi: 10.1016/J.JAAP.2015.12.022
    [93] Silber A, Levkovitch I, Graber ER (2010) pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environ Sci Technol 44: 9318–9323. https://doi.org/10.1021/es101283d. doi: 10.1021/es101283d
    [94] Gonzalez J, Sargent P, Ennis C (2021) Sewage treatment sludge biochar activated blast furnace slag as a low carbon binder for soft soil stabilisation. J Clean Prod 311: 127553. https://doi:10.1016/j.jclepro.2021.127553. doi: 10.1016/j.jclepro.2021.127553
    [95] Yuan JH, Xu RK (2011) The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag 27: 110–115. https://doi:10.1111/j.1475-2743.2010.00317.x doi: 10.1111/j.1475-2743.2010.00317.x
    [96] Cosentino I, Restuccia L, Ferro GA, et al. (2019) Type of materials, pyrolysis conditions, carbon content and size dimensions: The parameters that influence the mechanical properties of biochar cement-based composites. Theor Appl Fract Mech 103: 102261. https://doi:10.1016/j.tafmec.2019.102261. doi: 10.1016/j.tafmec.2019.102261
    [97] Malhotra HL (1956) The effect of temperature on the compressive strength of concrete. Mag Concr Res 8: 85–94. https://doi.org/10.1680/macr.1956.8.23.85 doi: 10.1680/macr.1956.8.23.85
    [98] Khoury GA (1992) Compressive strength of concrete at high temperatures: a reassessment. Mag Concr Res 44: 291–309. https://doi:10.1680/MACR.1992.44.161.291 doi: 10.1680/MACR.1992.44.161.291
    [99] Jang JG, Lee HK (2016) Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement. Cem Concr Res 82: 50–57. https://doi:10.1016/j.cemconres.2016.01.001 doi: 10.1016/j.cemconres.2016.01.001
    [100] Han T (2020) Application of peanut biochar as admixture in cement mortar. IOP Conf Ser-Earth Environ Sci 531: 012061. https://doi:10.1088/1755-1315/531/1/012061 doi: 10.1088/1755-1315/531/1/012061
    [101] Gupta S, Kua HW (2018) Effect of water entrainment by pre-soaked biochar particles on strength and permeability of cement mortar. Constr Build Mater 159: 107–125. https://doi:10.1016/j.conbuildmat.2017.10.095 doi: 10.1016/j.conbuildmat.2017.10.095
    [102] Sirico A, Bernardi P, Belletti B, et al. (2020) Mechanical characterization of cement-based materials containing biochar from gasification. Constr Build Mater 246: 118490. https://doi:10.1016/j.conbuildmat.2020.118490 doi: 10.1016/j.conbuildmat.2020.118490
    [103] Wang L, Chen L, Tsang DC, et al. (2020) Biochar as green additives in cement-based composites with carbon dioxide curing. J Clean Prod 258: 120678. https://doi:10.1016/j.jclepro.2020.120678 doi: 10.1016/j.jclepro.2020.120678
    [104] Birchall JD, Howard AJ, Kendall K (1981) Flexural strength and porosity of cements. Nature 289: 388–390. https://doi:10.1038/289388a0 doi: 10.1038/289388a0
    [105] Bowlby LK, Saha GC, Afzal MT (2018) Flexural strength behavior in pultruded GFRP composites reinforced with high specific-surface-area biochar particles synthesized via microwave pyrolysis. Composites Part A-Appl S 110: 190–196. https://doi:10.1016/j.compositesa.2018.05.003 doi: 10.1016/j.compositesa.2018.05.003
    [106] Cosentino I, Restuccia L, Ferro GA (2019) Type of materials, pyrolysis conditions, carbon content and size dimensions: The parameters that influence the mechanical properties of biochar cement-based composites. Theor Appl Fract Mech 103: 102261. https://doi:10.1016/j.tafmec.2019.102261 doi: 10.1016/j.tafmec.2019.102261
    [107] Das O, Kim NK, Kalamkarov AL, et al. (2017). Biochar to the rescue: Balancing the fire performance and mechanical properties of polypropylene composites. Polym Degrad Stab 144: 485–496. https://doi: 10.1016/j.polymdegradstab.2017.09.006 doi: 10.1016/j.polymdegradstab.2017.09.006
    [108] Ahmad S, Tulliani JM, Ferro GA, et al. (2015) Crack path and fracture surface modifications in cement composites. Frat ed Integrita Strutt 9: 34. https://doi:10.3221/igf-esis.34.58 doi: 10.3221/igf-esis.34.58
    [109] Gupta S, Kua HW, Low CY (2018) Use of biochar as carbon sequestering additive in cement mortar. Cem Concr Compos 87: 110–129. https://doi:10.1016/j.cemconcomp.2017.12.009 doi: 10.1016/j.cemconcomp.2017.12.009
    [110] Chen B, Li C, Chen L (2009) Experimental study of mechanical properties of normal-strength concrete exposed to high temperatures at an early age. Fire Saf J 44: 997–1002. https://doi:10.1016/j.firesaf.2009.06.007 doi: 10.1016/j.firesaf.2009.06.007
    [111] Gupta S, Kua HW, Dai Pang S (2020) Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature. Constr Build Mater 234: 117338. https://doi:10.1016/j.conbuildmat.2019.117338 doi: 10.1016/j.conbuildmat.2019.117338
    [112] Chen X, Wu S, Zhou J (2013) Influence of porosity on compressive and tensile strength of cement mortar. Constr Build Mater 40: 869–874. https://doi:10.1016/J.CONBUILDMAT.2012.11.072 doi: 10.1016/J.CONBUILDMAT.2012.11.072
    [113] Hossain MM, Karim MR, Hasan M, et al. (2016) Durability of mortar and concrete made up of pozzolans as a partial replacement of cement: A review. Constr Build Mater 116: 128–140. https://doi:10.1016/j.conbuildmat.2016.04.147 doi: 10.1016/j.conbuildmat.2016.04.147
    [114] Gupta S, Muthukrishnan S, Kua HW (2021) Comparing influence of inert biochar and silica rich biochar on cement mortar–Hydration kinetics and durability under chloride and sulfate environment. Constr Build Mater 268: 121142. https://doi:10.1016/j.conbuildmat.2020.121142 doi: 10.1016/j.conbuildmat.2020.121142
    [115] Zanotto F, Sirico A, Merchiori S, et al. (2022) Durability of reinforced concrete containing biochar and recycled polymers. Key Eng Mater 919: 188–196. https://doi.org/10.4028/p-mwn300 doi: 10.4028/p-mwn300
    [116] Cuthbertson D, Berardi U, Briens C, et al. (2019) Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties. Biomass Bioenerg 120: 77–83. https://doi:10.1016/j.biombioe.2018.11.007 doi: 10.1016/j.biombioe.2018.11.007
    [117] Wang L, Chen L, Tsang DC, et al. (2019) The roles of biochar as green admixture for sediment-based construction products. Cem Concr Compos 104: 103348. https://doi:10.1016/j.cemconcomp.2019.103348 doi: 10.1016/j.cemconcomp.2019.103348
    [118] Legan M, Gotvajn AŽ, Zupan K (2022) Potential of biochar use in building materials. J Environ Manage 309: 114704. https://doi:10.1016/j.jenvman.2022.114704 doi: 10.1016/j.jenvman.2022.114704
    [119] Berardi U, Naldi M (2017) The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance. Energ Buildings 144: 262–275. https://doi:10.1016/j.enbuild.2017.03.052 doi: 10.1016/j.enbuild.2017.03.052
    [120] Tan K, Qin Y, Wang J (2022) Evaluation of the properties and carbon sequestration potential of biochar-modified pervious concrete. Constr Build Mater 314: 125648. https://doi:10.1016/j.conbuildmat.2021.125648 doi: 10.1016/j.conbuildmat.2021.125648
    [121] Gupta S, Kua HW (2017) Factors determining the potential of biochar as a carbon capturing and sequestering construction material: critical review. J Mater Civ Eng 29: 04017086. https://doi:10.1061/(asce)mt.1943-5533.0001924 doi: 10.1061/(asce)mt.1943-5533.0001924
    [122] Maljaee H, Madadi R, Paiva H, et al. (2021) Sustainable lightweight mortar using biochar as sand replacement. Eur J Environ Civ Eng 26: 8263–8279. https://doi.org/10.1080/19648189.2021.2021998 doi: 10.1080/19648189.2021.2021998
    [123] Gupta S, Kua HW (2020) Combination of biochar and silica fume as partial cement replacement in mortar: Performance evaluation under normal and elevated temperature. Waste Biomass Valori 11: 2807–2824. https://doi:10.1007/s12649-018-00573-x. doi: 10.1007/s12649-018-00573-x
    [124] Restuccia L, Ferro GA (2016) Promising low cost carbon-based materials to improve strength and toughness in cement composites. Constr Build Mater 126: 1034–1043. https://doi:10.1016/j.conbuildmat.2016.09.101 doi: 10.1016/j.conbuildmat.2016.09.101
    [125] Mrad R, Chehab, G (2019). Mechanical and microstructure properties of biochar-based mortar: An internal curing agent for PCC. Sustainability 11: 2491. https://doi.org/10.3390/su11092491 doi: 10.3390/su11092491
    [126] Maljaee H, Madadi R, Paiva H, et al. (2021) Incorporation of biochar in cementitious materials: A roadmap of biochar selection. Constr Build Mater 283: 122757. https://doi.org/10.1016/j.conbuildmat.2021.122757 doi: 10.1016/j.conbuildmat.2021.122757
    [127] Restuccia, L, Ferro GA, Suarez-Riera D, et al. (2020). Mechanical characterization of different biochar-based cement composites. Procedia Struct Integr 25: 226–233. https://doi.org/10.1016/j.prostr.2020.04.027 doi: 10.1016/j.prostr.2020.04.027
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4175) PDF downloads(439) Cited by(11)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog