Ag3PO4 was prepared by the precipitation method using monobasic/dibasic phosphate salts (K2HPO4, KH2PO4, Na2HPO4, NaH2PO4) as a precipitating agent. The environment created by the precursor salts strong affected on the crystallinity and the morphology of Ag3PO4. Ag3PO4 synthesized from dibasic phosphate salts exhibited pseudospherical morphology and small particle size while monobasic phosphate salts promoted crystallization, resulting in a large grain size and a very diverse grain morphology. Ag3PO4 prepared from dibasic phosphate salts (K2HPO4 and Na2HPO4) exhibited superior photocatalytic ability, completely degrading rhodamine B (RhB) in 8 min and 10 min under Xenon lamp irradiation, respectively. This result once again confirms the necessity of particle size reduction in the production of photocatalysts.
Citation: Hung Nguyen Manh, Oanh Le Thi Mai, Chung Pham Do, Mai Vu Thanh, Anh Nguyen Thi Diep, Dao La Bich, Hang Lam Thi, Duyen Pham Thi, Minh Nguyen Van. Effect of monobasic/dibasic phosphate salts on the crystallinity, physical properties and photocatalytic performance of Ag3PO4 material[J]. AIMS Materials Science, 2022, 9(5): 770-784. doi: 10.3934/matersci.2022047
Ag3PO4 was prepared by the precipitation method using monobasic/dibasic phosphate salts (K2HPO4, KH2PO4, Na2HPO4, NaH2PO4) as a precipitating agent. The environment created by the precursor salts strong affected on the crystallinity and the morphology of Ag3PO4. Ag3PO4 synthesized from dibasic phosphate salts exhibited pseudospherical morphology and small particle size while monobasic phosphate salts promoted crystallization, resulting in a large grain size and a very diverse grain morphology. Ag3PO4 prepared from dibasic phosphate salts (K2HPO4 and Na2HPO4) exhibited superior photocatalytic ability, completely degrading rhodamine B (RhB) in 8 min and 10 min under Xenon lamp irradiation, respectively. This result once again confirms the necessity of particle size reduction in the production of photocatalysts.
[1] | Asghar A, Abdul Raman AA, Wan Daud WMA (2015) Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. J Clean Prod 87: 826–838. https://doi.org/10.1016/j.jclepro.2014.09.010 doi: 10.1016/j.jclepro.2014.09.010 |
[2] | Cuerda-Correa EM, Alexandre-Franco MF, Fernández-González C (2019) Advanced oxidation processes for the removal of antibiotics from water. An Overview. Water 12: 102. https://doi.org/10.3390/w12010102 doi: 10.3390/w12010102 |
[3] | Muruganandham M, Suri RPS, Jafari S, et al. (2014) Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment. Int J Photoenergy 2014: 1–21. https://doi.org/10.1155/2014/821674 doi: 10.1155/2014/821674 |
[4] | Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238: 37–38. https://doi.org/10.1038/238037a0 doi: 10.1038/238037a0 |
[5] | Khlyustova A, Sirotkin N, Kusova T, et al. (2020) Doped TiO2: the effect of doping elements on photocatalytic activity. Mater Adv 1: 1193–1201. https://doi.org/10.1039/D0MA00171F doi: 10.1039/D0MA00171F |
[6] | Ohno T, Akiyoshi M, Umebayashi T, et al. (2004) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Cataly A-Gen 265: 115–121. https://doi.org/10.1016/j.apcata.2004.01.007 doi: 10.1016/j.apcata.2004.01.007 |
[7] | Duan P, Han C, Zheng Y, et al. (2020) A2B2O7 (A = La, Pr, Nd, Sm, Gd and B Ti, Zr, Sn) ceramics for mild-temperature NO2 sensing and reduction. J Alloy Compd 831: 154866. https://doi.org/10.1016/j.jallcom.2020.154866 doi: 10.1016/j.jallcom.2020.154866 |
[8] | García-Ramírez E, Mondragón-Chaparro M, Zelaya-Angel O (2012) Band gap coupling in photocatalytic activity in ZnO–TiO2 thin films. Appl Phys A-Mater 108: 291–297. https://doi.org/10.1007/s00339-012-6890-x doi: 10.1007/s00339-012-6890-x |
[9] | Reli M, Huo P, Sihor M, et al. (2016) Novel TiO2/C3N4 photocatalysts for photocatalytic reduction of CO2 and for photocatalytic decomposition of N2O. J Phys Chem A 120: 8564–8573. https://doi.org/10.1021/acs.jpca.6b07236 doi: 10.1021/acs.jpca.6b07236 |
[10] | Huo P, Tang Y, Zhou M, et al. (2016) Fabrication of ZnWO4-CdS heterostructure photocatalysts for visible light induced degradation of ciprofloxacin antibiotic. J Ind Eng Chem 37: 340–346. https://doi.org/10.1016/j.cattod.2015.07.033 doi: 10.1016/j.cattod.2015.07.033 |
[11] | Ansari F, Sheibani S, Caudillo-Flores U, et al. (2020) Effect of TiO2 nanoparticle loading by sol-gel method on the gas-phase photocatalytic activity of CuxO–TiO2 nanocomposite. J Sol-Gel Sci Techn 96: 464–479. https://doi.org/10.1007/s10971-020-05388-8 doi: 10.1007/s10971-020-05388-8 |
[12] | Xing MY, Yang BX, Yu H, et al. (2013) Enhanced photocatalysis by Au nanoparticle loading on TiO2 single-crystal (001) and (110) facets. J Phys Chem Lett 4: 3910–3917. https://doi.org/10.1021/jz4021102 doi: 10.1021/jz4021102 |
[13] | George S, Pokhrel S, Ji Z, et al. (2011) Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm. J Am Chem Soc 133: 11270–11278. https://doi.org/10.1021/ja202836s doi: 10.1021/ja202836s |
[14] | Yi Z, Ye J, Kikugawa N, et al. (2010) An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat Mater 9: 559–564. https://doi.org/10.1038/nmat2780 doi: 10.1038/nmat2780 |
[15] | Afifah K, Andreas R, Hermawan D, et al. (2019) Tuning the Morphology of Ag3PO4 Photocatalysts with an Elevated Concentration of KH2PO4. Bull Chem React Eng 14: 625–633. https://doi.org/10.9767/bcrec.14.3.4649.625-633 doi: 10.9767/bcrec.14.3.4649.625-633 |
[16] | Sulaeman U, Permadi RD, Diastuti H (2021) The synthesis of Ag3PO4 under graphene oxide and hydroxyapatite aqueous dispersion for enhanced photocatalytic activity. IOP Conf Ser-Earth Environ Sci 746: 012040. http://dx.doi.org/10.1088/1755-1315/746/1/012040 doi: 10.1088/1755-1315/746/1/012040 |
[17] | Xu Y, Zhang X, Zhang Y, et al. (2020) Nano flake Ag3PO4 enhanced photocatalytic activity of bisphenol A under visible light irradiation. Colloid Interfac Sci 37: 100277. https://doi.org/10.1016/j.colcom.2020.100277 doi: 10.1016/j.colcom.2020.100277 |
[18] | Zhang W, Zhang X, Dang X, et al. (2016) The role of graphene oxide in Ag3PO4/graphene oxide composites for enhanced visible-light-driven photocatalytic ability. J Adv Oxid Technol 19: 317–325. https://doi.org/10.1515/jaots-2016-0216 doi: 10.1515/jaots-2016-0216 |
[19] | Zhang M, Du H, Ji J, et al. (2021) Highly efficient Ag3PO4/g-C3N4 Z-scheme photocatalyst for its enhanced photocatalytic performance in degradation of rhodamine B and phenol. Molecules 26: 2062. https://doi.org/10.3390/molecules26072062 doi: 10.3390/molecules26072062 |
[20] | Xu Z, Liu N, Wei Q, et al. (2021) Visible light-driven Ag3PO4@resin core-shell microspheres for photocatalytic degradation of methylene blue. Chem Phys Lett 772: 138591. |
[21] | Tab A, Dahmane M, Chemseddin B, et al. (2020) Photocatalytic degradation of quinoline yellow over Ag3PO4. Catalysts 10: 138591. https://doi.org/10.1016/j.cplett.2021.138591 doi: 10.1016/j.cplett.2021.138591 |
[22] | Osman NS, Sulaiman SN, Muhamad EN, et al. (2021) Synthesis of an Ag3PO4/Nb2O5 photocatalyst for the degradation of dye. Catalysts 11: 458. https://doi.org/10.3390/catal11040458 doi: 10.3390/catal11040458 |
[23] | Wang X, Utsumi M, Yang Y, et al. (2013) Removal of microcystins (-LR, -YR, -RR) by highly efficient photocatalyst Ag/Ag3PO4 under simulated solar light condition. Chem Eng J 230: 172–179. http://dx.doi.org/10.1016/j.cej.2019.123765 doi: 10.1016/j.cej.2019.123765 |
[24] | Dong P, Yin Y, Xu N, et al. (2014) Facile synthesis of tetrahedral Ag3PO4 mesocrystals and its enhanced photocatalytic activity. Mater Res Bull 60: 682–689. https://doi.org/10.1016/j.materresbull.2014.09.047 doi: 10.1016/j.materresbull.2014.09.047 |
[25] | Batvandi M, Haghighatzadeh A, Mazinani B (2020) Synthesis of Ag3PO4 microstructures with morphology-dependent optical and photocatalytic behaviors. Appl Phys A-Mater 126: 571. https://link.springer.com/article/10.1007/s00339-020-03761-6 |
[26] | Febiyanto F, Soleh A, Amal MSK, et al. (2019) Facile synthesis of Ag3PO4 photocatalyst with varied ammonia concentration and its photocatalytic activities for dye removal. Bull Chem ReactEng 14: 42–50. https://doi.org/10.9767/bcrec.14.1.2549.42-50 doi: 10.9767/bcrec.14.1.2549.42-50 |
[27] | Deng P, Xiong J, Lei S, et al. (2019) Nickel formate induced high-level in situ Ni-doping of g-C3N4 for a tunable band structure and enhanced photocatalytic performance. J Mater Chem A 7: 22385–22397. http://dx.doi.org/10.1039/C9TA04559G doi: 10.1039/C9TA04559G |
[28] | Botelho G, Andres J, Gracia L, et al. (2016) Photoluminescence and photocatalytic properties of Ag3PO4 microcrystals: An experimental and theoretical investigation. Chempluschem 81: 202–212. https://doi.org/10.1002/cplu.201500485 doi: 10.1002/cplu.201500485 |
[29] | Amornpitoksuk P, Intarasuwan K, Suwanboon S, et al. (2013) Effect of phosphate salts (Na3PO4, Na2HPO4, and NaH2PO4) on Ag3PO4 morphology for photocatalytic dye degradation under visible light and toxicity of the degraded dye product. Ind Eng Chem Res 52: 17369–17375. http://dx.doi.org/10.1021/ie401821w doi: 10.1021/ie401821w |
[30] | Futihah I, Riapanitra A, Yin S, et al. (2020) The pH dependence of Ag3PO4 synthesis on visible light photocatalytic activities. J Phys-Conf Ser 1494: 012027. http://dx.doi.org/10.1088/1742-6596/1494/1/012027 doi: 10.1088/1742-6596/1494/1/012027 |
[31] | Aufort J, Lebon M, Gallet X, et al. (2018) Macroscopic electrostatic effects in ATR-FTIR spectra of modern and archeological bones. Am Mineral 103: 326–329. https://doi.org/10.2138/am-2018-6320CCBYNCND doi: 10.2138/am-2018-6320CCBYNCND |
[32] | Destainville A, Champion E, Bernache-Assollant D, et al. (2003) Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate. Mater Chem Phys 80: 269–277. https://doi.org/10.1016/S0254-0584(02)00466-2 doi: 10.1016/S0254-0584(02)00466-2 |
[33] | Infrared Spectroscopy, Chemistry LibreTexts, 2022. Available from: https://chem.libretexts.org/@go/page/1847. |
[34] | Trench AB, Machado TR, Gouveia AF, et al. (2018) Connecting structural, optical, and electronic properties and photocatalytic activity of Ag3PO4:Mo complemented by DFT calculations. Appl Catal B-Environ 238: 198–211. https://doi.org/10.1016/j.apcatb.2018.07.019 doi: 10.1016/j.apcatb.2018.07.019 |
[35] | Song L, Yang J, Zhang S (2017) Enhanced photocatalytic activity of Ag3PO4 photocatalyst via glucose-based carbonsphere modification. Chem Eng J 309: 222–229. https://doi.org/10.1016/j.cej.2016.10.035 doi: 10.1016/j.cej.2016.10.035 |
[36] | Liu Y, Qian Q, Yi Z, et al. (2013) Low-temperature synthesis of single-crystalline BiFeO3 using molten KCl–KBr salt. Ceram Int 39: 8513–8516. https://doi.org/10.1016/j.ceramint.2013.03.025 doi: 10.1016/j.ceramint.2013.03.025 |
[37] | Marotti RE, Giorgi P, Machado G, et al. (2006) Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Solar Energ Mat Sol C 90: 2356–2361. https://doi.org/10.1016/j.solmat.2006.03.008 doi: 10.1016/j.solmat.2006.03.008 |
[38] | Botelho G, Sczancoski JC, Andres J, et al. (2015) Experimental and theoretical study on the structure, optical properties, and growth of metallic silver nanostructures in Ag3PO4. J Phys Chem C 119: 6293–6306. http://dx.doi.org/10.1021/jp512111v doi: 10.1021/jp512111v |
[39] | Zheng F, Wu D, Xia J, et al. (2015) Visible light photocatalytic degradation of Methyl orange by Ag3PO4/TiO2 coated self-cleaning cotton. J Optoelectron Adv M 17: 1528–1531. |
[40] | Hsieh MS, Su HJ, Hsieh PL, et al. (2017) Synthesis of Ag3PO4 crystals with tunable shapes for facet-dependent optical property, photocatalytic activity, and electrical conductivity Examinations. ACS Appl Mater Interfaces 9: 39086–39093. https://doi.org/10.1021/acsami.7b13941 doi: 10.1021/acsami.7b13941 |