Research article Topical Sections

Modification of Takari natural sand based silica with BSA (SiO2@BSA) for biogenic amines compound adsorbent

  • Received: 09 September 2021 Revised: 08 November 2021 Accepted: 16 November 2021 Published: 17 December 2021
  • The modification of Takari natural sand‑based silica with bovine serum albumin/BSA (SiO2@BSA) as an adsorbent for biogenic amines compounds has been successfully synthesized. The SiO2@BSA was synthesized by using the batch method, then was characterized by using FTIR and SEM. Here, A typical BSA group was identified with the new formed namely C–N and C–H, and N–H. The SEM image shows the surface morphology in granular, non‑uniform, rough, and agglomerated forms. Several parameters such as adsorbent dosages, pH, and contact time, shows this material was optimum for adsorption of BSA at pH 5 with adsorbent dosages is 0.1 g during 80 min of contact time. The mechanism adsorption of BSA in this material was found out by using six kinetics modeling, and thermodynamic studies. Here, the adsorption of BSA was fitted with pseudo‑second‑order kinetics. Furthermore, the thermodynamic studies show that adsorption of BSA is spontaneously and follows chemical adsorption.

    Citation: Johnson N. Naat, Yantus A. B Neolaka, Yosep Lawa, Calvin L. Wolu, Dewi Lestarani, Sri Sugiarti, Dyah Iswantini. Modification of Takari natural sand based silica with BSA (SiO2@BSA) for biogenic amines compound adsorbent[J]. AIMS Materials Science, 2022, 9(1): 36-55. doi: 10.3934/matersci.2022003

    Related Papers:

  • The modification of Takari natural sand‑based silica with bovine serum albumin/BSA (SiO2@BSA) as an adsorbent for biogenic amines compounds has been successfully synthesized. The SiO2@BSA was synthesized by using the batch method, then was characterized by using FTIR and SEM. Here, A typical BSA group was identified with the new formed namely C–N and C–H, and N–H. The SEM image shows the surface morphology in granular, non‑uniform, rough, and agglomerated forms. Several parameters such as adsorbent dosages, pH, and contact time, shows this material was optimum for adsorption of BSA at pH 5 with adsorbent dosages is 0.1 g during 80 min of contact time. The mechanism adsorption of BSA in this material was found out by using six kinetics modeling, and thermodynamic studies. Here, the adsorption of BSA was fitted with pseudo‑second‑order kinetics. Furthermore, the thermodynamic studies show that adsorption of BSA is spontaneously and follows chemical adsorption.



    加载中


    [1] Naat JN, Lapailaka T, Sabarudin A, et al. (2018) Synthesis and characterization of chitosan-silica hybrid adsorbent from the extraction of timor-east Nusa Tenggara island silica and its application to adsorption of copper(II) ion. Rasayan J Chem 11: 1467-1476. https://doi.org/10.31788/RJC.2018.1144055 doi: 10.31788/RJC.2018.1144055
    [2] Ingrachen-Brahmi D, Belkacemi H, Mahtout ABL (2020) Adsorption of Methylene Blue on silica gel derived from Algerian siliceous by-product of kaolin. J Mater Environ Sci 11: 1044-1057.
    [3] Huang W, Xu J, Tang B, et al. (2018) Adsorption performance of hydrophobically modified silica gel for the vapors of n-hexane and water. Adsorpt. Sci Technol 36: 888-903. https://doi.org/10.1177/0263617417728835 doi: 10.1177/0263617417728835
    [4] Curdts B, Pflitsch C, Pasel C, et al. (2015) Novel silica-based adsorbents with activated carbon structure. Micropor Mesopor Mat 210: 202-205. https://doi.org/10.1016/j.micromeso.2015.02.007 doi: 10.1016/j.micromeso.2015.02.007
    [5] Parida SK, Dash S, Patel S, et al. (2006) Adsorption of organic molecules on silica surface. Adv Colloid Interfac 121: 77-110. https://doi.org/10.1016/j.cis.2006.05.028 doi: 10.1016/j.cis.2006.05.028
    [6] Sulastri S, Kartini I, Kunarti ES (2011) Adsorption of Ca(II), Pb(II) and Ag(I) on sulfonato-silica hybrid. Indones J Chem 11: 273-278. https://doi.org/10.22146/ijc.21392 doi: 10.22146/ijc.21392
    [7] Liu D, Lipponen K, Quan P, et al. (2018) Impact of pore size and surface chemistry of porous silicon particles and structure of phospholipids on their interactions. ACS BiomaterSci Eng 4: 2378-2313. https://doi.org/10.1021/acsbiomaterials.8b00343 doi: 10.1021/acsbiomaterials.8b00343
    [8] Žid L, Zeleňák V, Almáši M, et al. (2020) Mesoporous silica as a drug delivery system for naproxen: Influence of surface functionalization. Molecules 25: 6-8. https://doi.org/10.3390/molecules25204722 doi: 10.3390/molecules25204722
    [9] Vlasova NN, Markitan OV, Golovkova LP (2011) Adsorption of biogenic amines on albumin modified silica surface. J Colloid Interface Sci 73: 26-29. https://doi.org/10.1134/S1061933X1006102X doi: 10.1134/S1061933X1006102X
    [10] Dash S, Mishra S, Patel S, et al. (2008) Organically modified silica: Synthesis and applications due to its surface interaction with organic molecules. Adv Colloid Interfac 140: 77-94. https://doi.org/10.1016/j.cis.2007.12.006 doi: 10.1016/j.cis.2007.12.006
    [11] Pawlaczyk M, Kurczewska J, Schroeder G (2018) Nanomaterials modification by dendrimers-A review. WJRR 5: 14-30.
    [12] Bozgeyik K, Kopac T (2016) Adsorption properties of arc produced multi walled carbon nanotubes for bovine serum albumin. Int J Chem React Eng 14: 549-558. https://doi.org/10.1515/ijcre-2015-0160 doi: 10.1515/ijcre-2015-0160
    [13] Kopac T, Bozgeyik K (2010) Effect of surface area enhancement on the adsorption of bovine serum albumin onto titanium dioxide. Colloid Surface B 76: 265-271. https://doi.org/10.1016/j.colsurfb.2009.11.002 doi: 10.1016/j.colsurfb.2009.11.002
    [14] Kopac T, Bozgeyik K, Flahaut E (2018) Adsorption and interactions of the bovine serum albumin-double walled carbon nanotube system. J Mol Liq 252: 1-8. https://doi.org/10.1016/j.molliq.2017.12.100 doi: 10.1016/j.molliq.2017.12.100
    [15] Brownsey GJ, Noel TR, Parker R, et al. (2003) The glass transition behavior of the globular protein bovine serum albumin. Biophys J 85: 3943-3950. https://doi.org/10.1016/S0006-3495(03)74808-5 doi: 10.1016/S0006-3495(03)74808-5
    [16] Kundu S, Banerjee C, Sarkar N (2017) Inhibiting the fibrillation of serum albumin proteins in the presence of Surface Active Ionic Liquids (SAILs) at low pH: Spectroscopic and microscopic study. J Phys Chem 121: 7550-7560. https://doi.org/10.1021/acs.jpcb.7b03457 doi: 10.1021/acs.jpcb.7b03457
    [17] Binaeian E, Mottaghizad M, Kasgary AH, et al. (2020) Bovine serum albumin adsorption by Bi-functionalized HMS, nitrilotriacetic acid-amine modified hexagonal mesoporous silicate. Solid State Sci 103: 106194. https://doi.org/10.1016/j.solidstatesciences.2020.106194 doi: 10.1016/j.solidstatesciences.2020.106194
    [18] Hurrell, Lynch F, Sassenko S, et al. (1998) Iron absorption in humans: bovine serum albumin compared with beef muscle and egg white. Am J Clin Nutr 47: 1-7. https://doi.org/10.1093/ajcn/47.1.102 doi: 10.1093/ajcn/47.1.102
    [19] Semaghiul B, Mihaela MB, Corina P, et al. (2015) Spectrophotometric method for the determination of total proteins in egg white samples. Rev Chim 66: 378-381.
    [20] Karimi M, Bahrami S, Ravari SB, et al. (2016) Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Del 13: 1609-1623. https://doi.org/10.1080/17425247.2016.1193149 doi: 10.1080/17425247.2016.1193149
    [21] Nosrati H, Sefidi N, Sharafi A, et al. (2018) Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg Chem 76: 501-509. https://doi.org/10.1016/j.bioorg.2017.12.033 doi: 10.1016/j.bioorg.2017.12.033
    [22] Choi JS, Meghani N (2016) Impact of surface modification in BSA nanoparticles for uptake in cancer cells. Colloid Surface B 145: 653-661. https://doi.org/10.1016/j.colsurfb.2016.05.050 doi: 10.1016/j.colsurfb.2016.05.050
    [23] Elzoghby AO, Samy WM, Elgindy NA (2012) Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157: 168-182. https://doi.org/10.1016/j.jconrel.2011.07.031 doi: 10.1016/j.jconrel.2011.07.031
    [24] Kopac T, Bozgeyik K, Yener J (2008) Effect of pH and temperature on the adsorption of bovine serum albumin onto titanium dioxide. Colloid Surface A 322: 19-28. https://doi.org/10.1016/j.colsurfa.2008.02.010 doi: 10.1016/j.colsurfa.2008.02.010
    [25] Yeung KM, Lu ZJ, Cheung NH (2009) Adsorption of bovine serum albumin on fused silica: Elucidation of protein-protein interactions by single-molecule fluorescence microscopy. Colloid Surface B 69: 246-250. https://doi.org/10.1016/j.colsurfb.2008.11.020 doi: 10.1016/j.colsurfb.2008.11.020
    [26] Zhao L, Zhou Y, Gao Y, et al. (2015) Bovine serum albumin nanoparticles for delivery of tacrolimus to reduce its kidney uptake and functional nephrotoxicity. Int J Pharm 483: 180-187. https://doi.org/10.1016/j.ijpharm.2015.02.018 doi: 10.1016/j.ijpharm.2015.02.018
    [27] Mallakpour S, Yazdan H (2018) Ultrasonics-Sonochemistry: The influence of bovine serum albumin-modified silica on the physicochemical properties of poly(vinyl alcohol) nanocomposites synthesized by ultrasonication technique. Ultrason Sonochem 41: 1-10. https://doi.org/10.1016/j.ultsonch.2017.09.017 doi: 10.1016/j.ultsonch.2017.09.017
    [28] Joseph D, Sachar S, Kishore N, et al. (2015) Mechanistic insights into the interactions of magnetic nanoparticles with bovine serum albumin in presence of surfactants. Colloids Surf B 135: 596-603. https://doi.org/10.1016/j.colsurfb.2015.08.022 doi: 10.1016/j.colsurfb.2015.08.022
    [29] Timin AS, Solomonov AV, Musabirov II, et al. (2014) Immobilization of bovine serum albumin onto porous immobilization of bovine serum albumin onto porous poly(vinylpyrrolidone)-modified silicas. Ind Eng Chem Res 53: 13699-13710. https://doi.org/10.1021/ie501915f doi: 10.1021/ie501915f
    [30] Ruiz CC, Herrero AM (2019) Impact of biogenic amines on food quality and safety. Foods 8: 62. https://doi.org/10.3390/foods8020062 doi: 10.3390/foods8020062
    [31] Ladero V, Calles-Enríquez M, Fernández M, et al. (2010) Toxicological effects of dietary biogenic amines. Curr Nutr Food Sci 6: 145-156. https://doi.org/10.2174/157340110791233256 doi: 10.2174/157340110791233256
    [32] Ahmadi E, Hashemikia S, Ghasemnejad M, et al. (2014) Synthesis and surface modification of mesoporous silica nanoparticles and its application as carriers for sustained drug delivery. Drug Deliv 21: 164-172. https://doi.org/10.3109/10717544.2013.838715 doi: 10.3109/10717544.2013.838715
    [33] Cao S, Aita GM (2013) Enzymatic hydrolysis and ethanol yields of combined surfactant and dilute ammonia treated sugarcane bagasse. Bioresource Technol 131: 357-364. https://doi.org/10.1016/j.biortech.2012.12.170 doi: 10.1016/j.biortech.2012.12.170
    [34] Jung HS, Moon DS, Lee JK (2012) Quantitative analysis and efficient surface modification of silica nanoparticles. J Nanomater 2012:1-8. https://doi.org/10.1155/2012/593471 doi: 10.1155/2012/593471
    [35] Mallakpour S, Nazari HY (2017) Ultrasonic-assisted fabrication and characterization of PVC-SiO2 nanocomposites having bovine serum albumin as a bio coupling agent. Ultrason Sonochem 39: 686-697. https://doi.org/10.1016/j.ultsonch.2017.05.036 doi: 10.1016/j.ultsonch.2017.05.036
    [36] Mujiyanti DR, Komari N, Sari NI (2013) Kajian termodinamika adsorpsi hibrida merkapto-silika dari abu sekam padi terhadap ion Co(II). J Kim Val 3: 71-75. https://doi.org/10.15408/jkv.v3i2.500 doi: 10.15408/jkv.v3i2.500
    [37] Nairi V, Medda S, Piludu M, et al. (2018) Interactions between bovine serum albumin and mesoporous silica nanoparticles functionalized with biopolymers. Chem Eng J 340: 42-50. https://doi.org/10.1016/j.cej.2018.01.011 doi: 10.1016/j.cej.2018.01.011
    [38] Hamdiani S, Nuryono N, Rusdiarso B (2015) Kinetika adsorpsi ion emas(III) oleh hibrida merkapto silika. J Pijar MIPA 10: 1-4. https://doi.org/10.29303/jpm.v10i1.11 doi: 10.29303/jpm.v10i1.11
    [39] Konicki W, Aleksandrzak M, Mijowska E (2017) Equilibrium, kinetic and thermodynamic studies on adsorption of cationic. Chem Eng Res Des 123: 1-6. https://doi.org/10.1016/j.cherd.2017.03.036 doi: 10.1016/j.cherd.2017.03.036
    [40] Lima ÉC, Adebayo MA, Machado FM (2015) Kinetic and equilibrium models of adsorption. In: Bergmann CP, Fernando MM, Carbon Nanomaterials as Adsorbents For Environmental and Biological Applications, Berlin: Springer International Publishing, 33-69. https://doi.org/10.1007/978-3-319-18875-1_3
    [41] Naat JN, Neolaka YAB, Lapailaka T, et al. (2021) Adsorption of Cu(II) and Pb(II) using silica@mercapto(HS@M) hybrid adsorbent synthesized from silica of Takari sand: optimization of parameters and kinetics. Rasayan J Chem 14: 550-560. https://doi.org/10.31788/RJC.2021.1415803 doi: 10.31788/RJC.2021.1415803
    [42] Supardi ZAI, Nisa Z, Kusumawati DH, et al. (2018) Phase transition of SiO2 nanoparticles prepared from natural sand: The calcination temperature effect. J Phys Conf Ser 1093: 012025. https://doi.org/10.1088/1742-6596/1093/1/012025 doi: 10.1088/1742-6596/1093/1/012025
    [43] Abdel-Rahman LH, Abu-Dief AM, Al-Farhan BS, et al. (2019) Kinetic study of humic acid adsorption onto smectite: The role of individual and blend background electrolyte. AIMS Mater Sci 6: 1176-1190. https://doi.org/10.3934/matersci.2019.6.1176 doi: 10.3934/matersci.2019.6.1176
    [44] Tan KL, Hameed BH (2017) Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng 74: 25-48. https://doi.org/10.1016/j.jtice.2017.01.024 doi: 10.1016/j.jtice.2017.01.024
    [45] Nguyen H, You S, Hosseini-bandegharaei A (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions : A critical review. Water Res 120: 88-116. https://doi.org/10.1016/j.watres.2017.04.014 doi: 10.1016/j.watres.2017.04.014
    [46] Zhang L, Luo H, Liu P, et al. (2016) A novel modified graphene oxide/chitosan composite used as an adsorbent for Cr(VI) in aqueous solutions. Int J Biol Macromol 87: 586-596. https://doi.org/10.1016/j.ijbiomac.2016.03.027 doi: 10.1016/j.ijbiomac.2016.03.027
    [47] Batool F, Akbar J, Iqbal S, et al. (2018) Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: An overview of linear and nonlinear approach and error analysis. Bioinorg Chem Appl 2018: 1-11. https://doi.org/10.1155/2018/3463724 doi: 10.1155/2018/3463724
    [48] Mahmoud NA, Nassef E, Husain M (2020) Use of spent oil shale to remove methyl red dye from aqueous solutions. AIMS Mater Sci 7: 338-353. https://doi.org/10.3934/matersci.2020.3.338 doi: 10.3934/matersci.2020.3.338
    [49] Wu F, Tseng R, Juang R (2009) Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J 150: 366-373. https://doi.org/10.1016/j.cej.2009.01.014 doi: 10.1016/j.cej.2009.01.014
    [50] Elhafez SEA, Hamad HA, Zaatout AA, et al. (2017) Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis. Environ Sci Pollut R 24: 1397-1415. https://doi.org/10.1007/s11356-016-7891-7 doi: 10.1007/s11356-016-7891-7
    [51] Neolaka YAB, Supriyanto G, Kusuma HS (2018) Adsorption performance of Cr(VI)-imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure for Cr(VI) removal from aqueous solution. J Environ Chem Eng 6: 3436-3443. https://doi.org/10.1016/j.jece.2018.04.053 doi: 10.1016/j.jece.2018.04.053
    [52] Obradovic B (2020) Guidelines for general adsorption kinetics modeling. Hem Ind 74: 65-70. https://doi.org/10.2298/HEMIND200201006O doi: 10.2298/HEMIND200201006O
    [53] Neolaka YAB, Lawa Y, Naat JN, et al. (2020) The adsorption of Cr(VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): Study of kinetics, isotherms and thermodynamics. J Mater Res Technol 9: 6544-6556. https://doi.org/10.1016/j.jmrt.2020.04.040 doi: 10.1016/j.jmrt.2020.04.040
    [54] Neolaka YAB, Kalla EBS, Supriyanto G, et al. (2017) Adsorption of hexavalent chromium from aqueous solutions using acid activated of natural zeolite collected from Ende-Flores, Indonesia. Rasayan J Chem 10: 606-612. http://dx.doi.org/10.7324/RJC.2017.1021710 doi: 10.7324/RJC.2017.1021710
    [55] Edet UA, Ifelebuegu AO (2020) Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes 8: 665. https://doi.org/10.3390/pr8060665 doi: 10.3390/pr8060665
    [56] Dizge N, Keskinler B, Barlas H (2009) Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin. J Hazard Mater 167: 915-926. https://doi.org/10.1016/j.jhazmat.2009.01.073 doi: 10.1016/j.jhazmat.2009.01.073
    [57] Enaime G, Baç aoui A, Yaacoubi A, et al. (2020) Applied sciences biochar for wastewater treatment-conversion technologies and applications. Appl Sci 10: 3492. https://doi.org/10.3390/app10103492 doi: 10.3390/app10103492
    [58] Zhang L, Luo H, Liu P, et al. (2016) A novel modified graphene oxide/chitosan composite used as an adsorbent for Cr(VI) in aqueous solutions. Int J Biol Macromol 87: 586-596. https://doi.org/10.1016/j.ijbiomac.2016.03.027 doi: 10.1016/j.ijbiomac.2016.03.027
    [59] Mustapha S, Shuaib DT, Ndamitso MM, et al. (2019) Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb(II), Cd(II), Zn(II) and Cu(II) ions from aqueous solutions using Albizia lebbeck pods. Appl Water Sci 9: 1-11. https://doi.org/10.1007/s13201-019-1021-x doi: 10.1007/s13201-019-1021-x
    [60] Lim JY, Mubarak NM, Abdullah, et al. (2018) Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals-A review. J Ind Eng Chem 66: 29-44. https://doi.org/10.1016/j.jiec.2018.05.028 doi: 10.1016/j.jiec.2018.05.028
    [61] Maleki MS, Moradi O, Tahmasebi S (2015) Adsorption of albumin by gold nanoparticles: Equilibrium and thermodynamics studies. Arab J Chem 10: S491-S502. https://doi.org/10.1016/j.arabjc.2012.10.009 doi: 10.1016/j.arabjc.2012.10.009
    [62] Duranoĝlu D, Trochimczuk AW, Beker U (2012) Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer. Chem Eng J 187: 193-202. https://doi.org/10.1081/SS-100100208 doi: 10.1081/SS-100100208
    [63] Guibal E, Milot C, Roussy J (2000) Influence of hydrolysis mechanisms on molybdate sorption isotherms using chitosan. Sep Sci Technol 35: 1021-1038. https://doi.org/10.1081/SS-100100208 doi: 10.1081/SS-100100208
    [64] Givens BE, Diklich ND, Fiegel J, et al. (2017) Adsorption of bovine serum albumin on silicon dioxide nanoparticles: Impact of pH on nanoparticle-protein interactions. Biointerphases 12: 02D404. https://doi.org/10.1116/1.4982598 doi: 10.1116/1.4982598
    [65] Salis A, Boströ m M, Medda L, et al. (2011) Measurements and theoretical interpretation of points of zero charge/potential of BSA protein. Langmuir 27: 11597-11604. https://doi.org/10.1021/la2024605 doi: 10.1021/la2024605
    [66] Li R, Wu Z, Wangb Y, et al. (2016) Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin. Biotechnol Rep 9: 46-52. https://doi.org/10.1016/j.btre.2016.01.002 doi: 10.1016/j.btre.2016.01.002
    [67] Purtell JN, Pesce AJ, Clyne DH, et al. (1979) Isoelectric point of albumin: Effect on renal handling of albumin. Kidney Int 16: 366-376. https://doi.org/10.1038/ki.1979.139 doi: 10.1038/ki.1979.139
    [68] Jal PK, Patel S, Mishra BK (2004) Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta 62: 1005-1028. https://doi.org/10.1016/j.talanta.2003.10.028 doi: 10.1016/j.talanta.2003.10.028
    [69] Abdillah AI, Darjito D, Khunur MM (2015) Pengaruh pH dan waktu kontak pada adsorpsi Ion Logam Cd2+ menggunakan adsorben kitin terikat silang glutaraldehid. Jurnal Ilmu Kimia Universitas Brawijaya 1: 826-832.
    [70] Chaudhry SA, Khan TA, Ali I (2017) Equilibrium, kinetic and thermodynamic studies of Cr(VI) adsorption from aqueous solution onto manganese oxide coated sand grain (MOCSG). J Mol Liq 236: 320-330. https://doi.org/10.1016/j.molliq.2017.04.029 doi: 10.1016/j.molliq.2017.04.029
    [71] Bozgeyik K, Kopac T (2010) Adsorption of Bovine Serum Albumin onto metal oxides: Adsorption equilibrium and kinetics onto alumina and zirconia. Int J Chem React Eng 8: 1-24. https://doi.org/10.2202/1542-6580.2336 doi: 10.2202/1542-6580.2336
    [72] Seredych M, Mikhalovska L, Mikhalovsky S, et al. (2018) Adsorption of bovine serum albumin on carbon-based materials. J Carbon Res 4: 1-14. https://doi.org/10.3390/c4010003 doi: 10.3390/c4010003
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2416) PDF downloads(133) Cited by(3)

Article outline

Figures and Tables

Figures(8)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog