[1]
|
Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23: 497-540.
|
[2]
|
Bastek J, Stolwijk NA, Kö ster TKJ, et al. (2010) Systematics of salt precipitation in complexes of polyethylene oxide and alkali metal iodides. Electrochim Acta 55: 1289-1297.
|
[3]
|
Wiencierz M, Stolwijk NA (2012) Systematics of ionic transport and pair formation in amorphous PEO-NaI polymer electrolytes. Solid State Ionics 212: 88-99.
|
[4]
|
Sutjianto A, Curtiss LA (1998) Li+-diglyme complexes: Barriers to lithium cation migration. J Phys Chem A 102: 968-974.
|
[5]
|
Johansson P, Tegenfeldt J, Lindgren J (1999) Modelling amorphous lithium salt-PEO polymer electrolytes: ab initio calculations of lithium ion-tetra-, penta- and hexaglyme complexes. Polymer 40: 4399-4406.
|
[6]
|
Redfern PC, Curtiss LA (2002) Quantum chemical studies of Li+ cation binding to polyalkyloxides. J Power Sources 110: 401-405.
|
[7]
|
Johansson P, Jacobsson P (2006) Lithium salt dissociation in non-aqueous electrolytes modeled by ab initio calculations. Solid State Ionics 177: 2691-2697.
|
[8]
|
Eilmes A, Kubisiak P (2007) Quantum-chemical study on the effect of lewis acid centers in a poly(ethylene oxide)-based solid electrolyte. J Phys Chem A 111: 6388-6396.
|
[9]
|
Halley JW, Duan Y, Curtiss LA, et al. (1999) Lithium perchlorate ion pairing in a model of amorphous polyethylene oxide. J Chem Phys 111: 3302-3308.
|
[10]
|
Borodin O, Smith GD, Douglas R (2003) Force field development and MD simulations of poly(ethylene oxide)/LiBF4 polymer electrolytes. J Phys Chem B 107: 6824-6837.
|
[11]
|
Siqueira LJ, Ribeiro MC (2005) Molecular dynamics simulation of the polymer electrolyte poly(ethylene oxide)/LiClO4. I. structural properties. J Chem Phys 122: 194911.
|
[12]
|
Siqueira LJ, Ribeiro MC (2006) Molecular dynamics simulation of the polymer electrolyte poly(ethylene oxide)/LiClO4. II. dynamical properties. J Chem Phys 125: 214903.
|
[13]
|
Borodin O, Smith GD (2006) Development of many-body polarizable force fields for Li-battery applications: 2. LiTFSI-doped oligoether, polyether, and carbonate-based electrolytes. J Phys Chem B 110: 6293-6299.
|
[14]
|
Costa LT, Ribeiro MCC (2007) Molecular dynamics simulation of polymer electrolytes based on poly(ethylene oxide) and ionic liquids. II. dynamical properties. J Chem Phys 127: 164901.
|
[15]
|
Eilmes A, Kubisiak P (2011) Molecular dynamics study on the effect of lewis acid centers in poly(ethylene oxide)/LiClO4 polymer electrolyte. J Phys Chem B 115: 14938-14946.
|
[16]
|
Chattoraj J, Diddens D, Heuer A (2014) Effects of ionic liquids on cation dynamics in amorphous polyethylene oxide electrolytes. J Chem Phys 140: 024906.
|
[17]
|
Johansson P, Gejii SP, Tegenfeldt J, et al. (1996) Local coordination and conformation in polyether electrolytes: geometries of M-triglyme complexes (M = Li, Na, K, Mg and Ca) from ab-initio molecular orbital calculations. Solid State Ionics 86-88: 297-302.
|
[18]
|
de Jonge JJ, van Zon A, de Leeuw SW (2002) Molecular dynamics study of the inf luence of the polarizability in PEOx-NaI polymer electrolyte systems. Solid State Ionics 147: 349-359.
|
[19]
|
Dhumal NR, Gejii SP (2006) Theoretical studies in local coordination and vibrational spectra of M+CH3O(CH2CH2O)nCH3 (n = 2-7) complexes (M = Na, K, Mg and Ca). Chem Phys 323: 595-605.
|
[20]
|
Mandai T, Nozawa R, Tsuzuki S, et al. (2013) Phase diagrams and solvate structures of binary mixtures of glymes and Na salts. J Phys Chem B 117: 15072-15085.
|
[21]
|
Mandai T, Yoshida K, Tsuzuki S, et al. (2015) Effect of ionic size on solvate stability of glyme-based solvate ionic liquids. J Phys Chem B 119: 1523-1534.
|
[22]
|
Lin KJ, Maranas JK (2013) Does decreasing ion-ion association improve cation mobility in single ion conductors? Phys Chem Chem Phys 15: 16143-16151.
|
[23]
|
Wahlers J, Fulfer KD, Harding DP, et al. (2016) Solvation structure and concentration in glyme-based sodium electrolytes: A combined spectroscopic and computational study. J Phys Chem C 120: 17949-17959.
|
[24]
|
Terada S, Susa H, Tsuzuki S, et al. (2016) Dissociation and diffusion of glyme-sodium bis(trifluoromethanesulfonyl)amide complexes in hydrofluoroether-based electrolytes for sodium batteries. J Phys Chem C 120: 23339-23350.
|
[25]
|
Frisch MJ, Trucks GW, Schlegel HB, et al. (2009) Gaussian 09 Revision D.01. Available from: http://www.gaussian.com/.
|
[26]
|
Tinker molecular modeling package, Tinker 5.1. Avaliable from: http://dasher.wustl.edu/tinker/.
|
[27]
|
Eilmes A, Kubisiak P (2015) Explicit solvent modeling of solvatochromic probes in ionic liquids: Implications of solvation shell structure. J Phys Chem B 119: 11708-11720.
|
[28]
|
Borodin O (2009) Polarizable force field development and molecular dynamics simulations of ionic liquids. J Phys Chem B 113: 11463-11478.
|
[29]
|
Ren PY, Wu CJ, Ponder JW (2011) Polarizable atomic multipole-based molecular mechanics for organic molecules. J Chem Theory Comput 7: 3143-3161.
|
[30]
|
Accelrys Software, Materials Studio v.4.2. Avaliable from: http://accelrys.com.
|
[31]
|
Martínez L, Andrade R, Birgin EG, et al. (2009) PACKMOL: A package for building initial configurations for molecular dynamics simulations. J Comput Chem 30: 2157-2164.
|
[32]
|
Thole BT (1981) Molecular polarizabilities calculated with a modified dipole interaction. Chem Phys 59: 341-350.
|
[33]
|
Müller-Plathe F (1994) Permeation of polymers-a computational approach. Acta Polym 45: 259-293.
|