Citation: Mohamed Jaffer Sadiq Mohamed, Denthaje Krishna Bhat. Novel ZnWO4/RGO nanocomposite as high performance photocatalyst[J]. AIMS Materials Science, 2017, 4(1): 158-171. doi: 10.3934/matersci.2017.1.158
[1] | Blackburn RS (2004) Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment. Environ Sci Technol 38: 4905-4909. doi: 10.1021/es049972n |
[2] | Ma J, Song W, Chen C, et al. (2005) Fenton degradation of organic compounds promoted by dyes under visible irradiation. Environ Sci Technol 39: 5810-5815. doi: 10.1021/es050001x |
[3] | Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photoch Photobio A 108: 1-35. doi: 10.1016/S1010-6030(97)00118-4 |
[4] | Born P, Robertson D, Smith P, et al. (1981) The preparation and scintillation properties of zinc tungstate single crystals. J Lumin 24: 131-134. |
[5] | Tien HN, Khoa NT, Hahn SH, et al. (2013) One-pot synthesis of a reduced graphene oxide-zinc oxide sphere composite and its use as a visible light photocatalyst. Chem Eng J 229: 126-133. doi: 10.1016/j.cej.2013.05.110 |
[6] | Huang X, Qi X, Boey F, et al. (2012) Graphene-based composites. Chem Soc Rev 41: 666-686. doi: 10.1039/C1CS15078B |
[7] | Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41: 782-796. doi: 10.1039/C1CS15172J |
[8] | Wang W, Shen J, Li N, et al. (2013) Synthesis of novel photocatalytic RGO-ZnWO4 nanocomposites with visible light photoactivity. Mater Lett 106: 284-286. doi: 10.1016/j.matlet.2013.05.042 |
[9] | Sadiq MMJ, Shenoy US, Bhat DK (2016) Novel RGO-ZnWO4-Fe3O4 nanocomposite as high performance visible light photocatalyst. RSC Adv 6: 61821-61829. doi: 10.1039/C6RA13002J |
[10] | Sadiq MMJ, Nesaraj AS (2015) Soft chemical synthesis and characterization of BaWO4 nanoparticles for photocatalytic removal of Rhodamine B present in water sample. J Nanostruct Chem 5: 45-54. doi: 10.1007/s40097-014-0133-y |
[11] | Sadiq Mohamed MJ, Bhat Denthaje K (2016) Novel RGO-ZnWO4-Fe3O4 nanocomposite as an efficient catalyst for rapid reduction of 4-nitrophenol to 4-aminophenol. Ind Eng Chem Res 55: 7267-7272. doi: 10.1021/acs.iecr.6b01882 |
[12] | Hummers Jr WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80: 1339-1339. doi: 10.1021/ja01539a017 |
[13] | Huang G, Shi R, Zhu Y (2011) Photocatalytic activity and photoelectric performance enhancement for ZnWO4 by fluorine substitution. J Mol Catal A-Chem 348: 100-105. doi: 10.1016/j.molcata.2011.08.013 |
[14] | Rahimi Nasrabadi M, Pourmortazavi SM, Ganjali MR, et al. (2013) Electrosynthesis and characterization of zinc tungstate nanoparticles. J Mol Struct 1047: 31-36. doi: 10.1016/j.molstruc.2013.04.050 |
[15] | Raja K, Verma S, Karmakar S, et al. (2011) Synthesis and characterization of magnetite nanocrystals. Cryst Res Technol 46: 497-500. doi: 10.1002/crat.201100105 |
[16] | Huang G, Zhu Y (2007) Synthesis and photocatalytic performance of ZnWO4 catalyst. Mater Sci Eng B 139: 201-208. doi: 10.1016/j.mseb.2007.02.009 |
[17] | Nethravathi C, Nisha T, Ravishankar N, et al. (2009) Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide. Carbon 47: 2054-2059. doi: 10.1016/j.carbon.2009.03.055 |
[18] | Szabó T, Berkesi O, Dékány I (2005) DRIFT study of deuterium-exchanged graphite oxide. Carbon 43: 3186-3189. doi: 10.1016/j.carbon.2005.07.013 |
[19] | Jiang N, Xiu Z, Xie Z, et al. (2014) Reduced graphene oxide-CdS nanocomposites with enhanced visible-light photoactivity synthesized using ionic-liquid precursors. New J Chem 38: 4312-4320. doi: 10.1039/C4NJ00152D |
[20] | Atuchin VV, Galashov EN, Khyzhun OY, et al. (2011) Structural and electronic properties of ZnWO4 (010) cleaved surface. Cryst Growth Des 11: 2479-2484. doi: 10.1021/cg200265p |
[21] | Cortés Jácome M, Angeles Chavez C, Lopez Salinas E, et al. (2007) Migration and oxidation of tungsten species at the origin of acidity and catalytic activity on WO3-ZrO2 catalysts. Appl Catal A-Gen 318: 178-189. doi: 10.1016/j.apcata.2006.11.019 |
[22] | Sun L, Zhao X, Jia CJ, et al. (2012) Enhanced visible-light photocatalytic activity of gC3N4-ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies. J Mater Chem 22: 23428-23438. doi: 10.1039/c2jm34965e |
[23] | Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi (B) 15: 627-637. doi: 10.1002/pssb.19660150224 |
[24] | Jiang Y, Wang WN, et al. (2014) Facile Aerosol Synthesis and Characterization of Ternary Crumpled Graphene-TiO2-Magnetite Nanocomposites for Advanced Water Treatment. ACS Appl Mater Inter 6: 11766-11774. |
[25] | Sun M, Fang Y, Wang Y, et al. (2015) Synthesis of Cu2O/graphene/rutile TiO2 nanorod ternary composites with enhanced photocatalytic activity. J Alloy Compd 650: 520-527. doi: 10.1016/j.jallcom.2015.08.002 |
[26] | Luo QP, Yu XY, Lei BX, et al. (2012) Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J Phys Chem C 116: 8111-8117. doi: 10.1021/jp2113329 |
[27] | Williams G, Kamat PV (2009) Graphene-Semiconductor Nanocomposites: Excited-State Interactions between ZnO Nanoparticles and Graphene Oxide. Langmuir 25: 13869-13873. doi: 10.1021/la900905h |
[28] | Wang L, Ding J, Chai Y, et al. (2015) CeO2 nanorod/gC3N4/N-rGO composite: enhanced visible-light-driven photocatalytic performance and the role of N-rGO as electronic transfer media. Dalton Trans 44: 11223-11234. doi: 10.1039/C5DT01479D |
[29] | Pradhan GK, Padhi DK, Parida K (2013) Fabrication of α-Fe2O3 nanorod/RGO composite: a novel hybrid photocatalyst for phenol degradation. ACS Appl Mater Inter 5: 9101-9110. doi: 10.1021/am402487h |
[30] | Lavanya T, Dutta M, Satheesh K (2016) Graphene wrapped porous tubular rutile TiO2 nanofibers with superior interfacial contact for highly efficient photocatalytic performance for water treatment. Sep Purif Technol 168: 284-293. doi: 10.1016/j.seppur.2016.05.059 |
[31] | Lavanya T, Satheesh K, Dutta M, et al. (2014) Superior photocatalytic performance of reduced graphene oxide wrapped electrospun anatase mesoporous TiO2 nanofibers. J Alloy Compd 615: 643-650. doi: 10.1016/j.jallcom.2014.05.088 |