Citation: Antonio Barbon, Francesco Tampieri. Identification of slow relaxing spin components by pulse EPR techniques in graphene-related materials[J]. AIMS Materials Science, 2017, 4(1): 147-157. doi: 10.3934/matersci.2017.1.147
[1] | Quesnel E, Roux F, Emieux F, et al. (2015) Graphene-based technologies for energy applications, challenges and perspectives. 2D Mater 2: 030204. doi: 10.1088/2053-1583/2/3/030204 |
[2] | Chen A, Hutchby J, Zhirnov V, et al. (2014) Emerging nanoelectronic devices, John Wiley & Sons. |
[3] | Mattei TA, Rehman AA (2014) Technological developments and future perspectives on graphene-based metamaterials: a primer for neurosurgeons. Neurosurgery 74: 499–516. doi: 10.1227/NEU.0000000000000302 |
[4] | Ray S (2015) Applications of graphene and graphene-oxide based nanomaterials, William Andrew. |
[5] | Higgins D, Zamani P, Yu A, et al. (2016) The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energ Environ Sci 9: 357–390. doi: 10.1039/C5EE02474A |
[6] | Ferrari AC, Bonaccorso F, Fal'Ko V, et al. (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7: 4598–4810. doi: 10.1039/C4NR01600A |
[7] | Novoselov KS, Geim AK, Morozov SV, et al. (2004) Electric field effect in atomically thin carbon films. Science 306: 666–669. doi: 10.1126/science.1102896 |
[8] | Hummers Jr WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80: 1339–1339. doi: 10.1021/ja01539a017 |
[9] | Tampieri F, Silvestrini S, Riccò R, et al. (2014) A comparative electron paramagnetic resonance study of expanded graphites and graphene. J Mater Chem C 2: 8105–8112. doi: 10.1039/C4TC01383B |
[10] | Ching W, Rulis P (2012) Electronic Structure Methods for Complex Materials: The orthogonalized linear combination of atomic orbitals, Oxford University Press. |
[11] | Yoon K, Rahnamoun A, Swett JL, et al. (2016) Atomistic-Scale Simulations of Defect Formation in Graphene under Noble Gas Ion Irradiation. ACS Nano 10: 8376–8384. doi: 10.1021/acsnano.6b03036 |
[12] | Ferrari A, Meyer J, Scardaci V, et al. (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97: 187401. doi: 10.1103/PhysRevLett.97.187401 |
[13] | Badenhorst H (2014) Microstructure of natural graphite flakes revealed by oxidation: limitations of XRD and Raman techniques for crystallinity estimates. Carbon 66: 674–690. doi: 10.1016/j.carbon.2013.09.065 |
[14] | Pardini L, Löffler S, Biddau G, et al. (2016) Mapping atomic orbitals with the transmission electron microscope: Images of defective graphene predicted from first-principles theory. Phys Rev Lett 117: 036801. doi: 10.1103/PhysRevLett.117.036801 |
[15] | Ćirić L, Sienkiewicz A, Nafradi B, et al. (2009) Towards electron spin resonance of mechanically exfoliated graphene. Phys Status Solidi B 246: 2558–2561. doi: 10.1002/pssb.200982325 |
[16] | McClure J (1957) Band structure of graphite and de Haas-van Alphen effect. Phys Rev 108: 612. doi: 10.1103/PhysRev.108.612 |
[17] | Wagoner G (1960) Spin resonance of charge carriers in graphite. Phys Rev 118: 647. doi: 10.1103/PhysRev.118.647 |
[18] | Nair R, Sepioni M, Tsai I, et al. (2012) Spin-half paramagnetism in graphene induced by point defects. Nat Phys 8: 199–202. doi: 10.1038/nphys2183 |
[19] | Tommasini M, Castiglioni C, Zerbi G, et al. (2011) A joint Raman and EPR spectroscopic study on ball-milled nanographites. Chem Phys Lett 516: 220–224. doi: 10.1016/j.cplett.2011.09.094 |
[20] | Barbon A, Brustolon M (2012) An EPR Study on Nanographites. Appl Magn Reson 42: 197–210. doi: 10.1007/s00723-011-0285-6 |
[21] | Makarova T, Palacio F (2006) Carbon based magnetism: an overview of the magnetism of metal free carbon-based compounds and materials, Elsevier Science. |
[22] | Osipov VY, Shames A, Enoki T, et al. (2009) Magnetic and EPR studies of edge-localized spin paramagnetism in multi-shell nanographites derived from nanodiamonds. Diam Relat Mater 18: 220–223. doi: 10.1016/j.diamond.2008.09.015 |
[23] | Augustyniak-Jabłokow MA, Tadyszak K, Maćkowiak M, et al. (2012) ESR study of spin relaxation in graphene. Chem Phys Lett 557: 118–122. |
[24] | Tadyszak K, Augustyniak-Jabłokow MA, Więckowski AB, et al. (2015) Origin of electron paramagnetic resonance signal in anthracite. Carbon 94: 53–59. doi: 10.1016/j.carbon.2015.06.057 |
[25] | Makarova T, Shelankov A, Zyrianova A, et al. (2015) Edge state magnetism in zigzag-interfaced graphene via spin susceptibility measurements. Sci Rep 5: 13382. doi: 10.1038/srep13382 |
[26] | Collauto A, Mannini M, Sorace L, et al. (2012) A slow relaxing species for molecular spin devices: EPR characterization of static and dynamic magnetic properties of a nitronyl nitroxide radical. J Mater Chem 22: 22272–22281. doi: 10.1039/c2jm35076a |
[27] | Marrale M, Longo A, Brai M, et al. (2011) Pulsed EPR analysis of tooth enamel samples exposed to UV and γ-radiations. Radiat Measur 46: 789–792. doi: 10.1016/j.radmeas.2011.05.020 |
[28] | Brustolon M, Barbon A (2003) Pulsed EPR of Paramagnetic Centers in Solid Phases, In: Lund A EPR of Free Radicals in Solids, Springer, 39–93. |
[29] | Barbon A, Brustolon M, Maniero A, et al. (1999) Dynamics and spin relaxation of tempone in a host crystal. An ENDOR, high field EPR and electron spin echo study. Phys Chem Chem Phys 1: 4015–4023. |
[30] | Mims W (1965) Pulsed ENDOR experiments. Proc R Soc Lond A 283: 452–457. doi: 10.1098/rspa.1965.0034 |
[31] | Schweiger A, Jeschke G (2001) Principles of pulse electron paramagnetic resonance, Oxford University Press. |
[32] | Weil JA, Bolton JR (2007) Electron paramagnetic resonance: elementary theory and practical applications, John Wiley & Sons. |
[33] | Lewis IC, Singer L (1965) Electron spin resonance of radical cations produced by the oxidation of aromatic hydrocarbons with SbCl5. J Chem Phys 43: 2712–2727. doi: 10.1063/1.1697200 |
[34] | Janata J, Gendell J, Ling C, et al. (1967) Concerning the anion and cation radicals of corannulene. J Am Chem Soc 89: 3056–3058. doi: 10.1021/ja00988a050 |