Research article Special Issues

Towards low-voltage organic thin film transistors (OTFTs) with solution-processed high-k dielectric and interface engineering

  • Received: 16 May 2015 Accepted: 03 November 2015 Published: 24 November 2015
  • Although impressive progress has been made in improving the performance of organic thin film transistors (OTFTs), the high operation voltage resulting from the low gate capacitance density of traditional SiO2 remains a severe limitation that hinders OTFTs'development in practical applications. In this regard, developing new materials with high-k characteristics at low cost is of great scientific and technological importance in the area of both academia and industry. Here, we introduce a simple solution-based technique to fabricate high-k metal oxide dielectric system (ATO) at low-temperature, which can be used effectively to realize low-voltage operation of OTFTs. On the other hand, it is well known that the properties of the dielectric/semiconductor and electrode/semiconductor interfaces are crucial in controlling the electrical properties of OTFTs. By optimizing the above two interfaces with octadecylphosphonic acid (ODPA) self-assembled monolayer (SAM) and properly modified low-cost Cu, obviously improved device performance is attained in our low-voltage OTFTs. Further more, organic electronic devices on flexible substrates have attracted much attention due to their low-cost, rollability, large-area processability, and so on. Basing on the above results, outstanding electrical performance is achieved in flexible devices. Our studies demonstrate an effective way to realize low-voltage, high-performance OTFTs at low-cost.

    Citation: Yaorong Su, Weiguang Xie, Jianbin Xu. Towards low-voltage organic thin film transistors (OTFTs) with solution-processed high-k dielectric and interface engineering[J]. AIMS Materials Science, 2015, 2(4): 510-529. doi: 10.3934/matersci.2015.4.510

    Related Papers:

  • Although impressive progress has been made in improving the performance of organic thin film transistors (OTFTs), the high operation voltage resulting from the low gate capacitance density of traditional SiO2 remains a severe limitation that hinders OTFTs'development in practical applications. In this regard, developing new materials with high-k characteristics at low cost is of great scientific and technological importance in the area of both academia and industry. Here, we introduce a simple solution-based technique to fabricate high-k metal oxide dielectric system (ATO) at low-temperature, which can be used effectively to realize low-voltage operation of OTFTs. On the other hand, it is well known that the properties of the dielectric/semiconductor and electrode/semiconductor interfaces are crucial in controlling the electrical properties of OTFTs. By optimizing the above two interfaces with octadecylphosphonic acid (ODPA) self-assembled monolayer (SAM) and properly modified low-cost Cu, obviously improved device performance is attained in our low-voltage OTFTs. Further more, organic electronic devices on flexible substrates have attracted much attention due to their low-cost, rollability, large-area processability, and so on. Basing on the above results, outstanding electrical performance is achieved in flexible devices. Our studies demonstrate an effective way to realize low-voltage, high-performance OTFTs at low-cost.


    加载中
    [1] Halik M, Klauk H, Zschieschang U, et al. (2004) Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature 431: 963-966.
    [2] Moon H, Zeis R, Borkent E, et al. (2004) Synthesis, crystal structure, and transistor performance of tetracene derivatives. J Am Chem Soc 126: 15322-15223. doi: 10.1021/ja045208p
    [3] Jung B., Lee K, Sun J, et al. (2010) Air-operable, high-mobility organic transistors with semifluorinated side chains and unsubstituted naphthalenetetracarboxylic diimide cores: high mobility and environmental and bias stress stability from the perfluorooctylpropyl side chain. Adv Funct Mater 20: 2930-2944. doi: 10.1002/adfm.201000655
    [4] Dickey K, Anthony J, Loo Y, (2006) Improving organic thin-Film transistor performance through solvent-vapor annealing of solution-processable triethylsilylethynyl anthradithiophene. Adv Mater 18: 1721-1726. doi: 10.1002/adma.200600188
    [5] Coropceanu V, Cornil J, Demetrio A, et al. (2007) Charge transport in organic semiconductors. Chem Rev 107: 926-952. doi: 10.1021/cr050140x
    [6] Li W, Auciello O, Premnath R, et al. (2010) Giant dielectric constant dominated by Maxwell-Wagner relaxation in Al2O3/TiO2 nanolaminates synthesized by atomic layer deposition. Appl Phys Lett 96: 162907. doi: 10.1063/1.3413961
    [7] Lee J, Kim J, Im S, et al. (2003) Pentacene thin-film transistors with Al2O3+x gate dielectric films deposited on indium-tin-oxide glass. Appl Phys Lett 83: 2689. doi: 10.1063/1.1613997
    [8] Maunoury C, Dabertrand K, Martinez E, et al. (2007) Chemical interface analysis of as grown HfO2 ultrathin films on SiO2. J Appl Phys 101: 034112. doi: 10.1063/1.2435061
    [9] Di C, Yu G, Liu Y, et al. (2006) High-performance low-cost organic field-effect transistors with chemically modified bottom electrodes. J Am Chem Soc 128: 16418-16419. doi: 10.1021/ja066092v
    [10] Di C, Yu G, Liu Y, et al. (2008) High-performance organic field-effect transistors with low-cost copper electrodes. Adv Mater 20: 1286-1290. doi: 10.1002/adma.200701812
    [11] Di C, Liu Y, Yu G, et al. (2009) Interface engineering: an effective approach toward high-performance organic field-effect transistors. Acc Chem Res 42: 1573-1583. doi: 10.1021/ar9000873
    [12] Ma H, Yip H, Huang F, et al. (2010) Interface engineering for organic electronics. Adv Funct Mater 20: 1371-1388. doi: 10.1002/adfm.200902236
    [13] Chua L, Zaumseil J, Chang J, et al. (2005) General observation of n-type field-effect behaviour in organic semiconductors. Nature 434: 194-199. doi: 10.1038/nature03376
    [14] Frank M, Sayan S, Dörmann S, et al. (2004) Hafnium oxide gate dielectrics grown from an alkoxide precursor: structure and defects. J Mater Sci Eng B 109: 6-10. doi: 10.1016/j.mseb.2003.10.020
    [15] Lu Y, Lee W, Lee H, et al. (2009) Low-voltage organic transistors with titanium oxide/polystyrene bilayer dielectrics. Appl Phys Lett 94: 113303. doi: 10.1063/1.3097010
    [16] Fleischli F, Suarez S, Schaer M, et al. (2010) Organic thin-film transistors: the passivation of the dielectric-pentacene interface by dipolar self-assembled monolayers. Langmuir 26: 15044-15049. doi: 10.1021/la102060u
    [17] Wu W, Liu Y, Wang Y, et al. (2008) High-performance, low-operating-voltage organic field-effect transistors with low pinch-off voltages. Adv Funct Mater 18: 810-815. doi: 10.1002/adfm.200701125
    [18] Tang M, Okamot T, Bao Z, (2006) High-performance organic semiconductors: asymmetric linear acenes containing sulphur. J Am Chem Soc 128: 16002-16003.
    [19] Acton O, Osaka I, Ting G, et al. (2009) Phosphonic acid self-assembled monolayer and amorphous hafnium oxide hybrid dielectric for high performance polymer thin film transistors on plastic substrates. Appl Phys Lett 95: 113305. doi: 10.1063/1.3231445
    [20] Gao W, Dickinson L, Grozinger C, et al. (2009) Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 12: 6429-6435.
    [21] Ma H, Acton O, Ting G, et al. (2008) Low-voltage organic thin-film transistors with π-σ-phosphonic acid molecular dielectric monolayers. Appl Phys Lett 92: 113303. doi: 10.1063/1.2857502
    [22] McElwee J, Helmy R, Fadeev A, et al. (2005) Thermal stability of organic monolayers chemically grafted to minerals. J Colloid Interface Sci 285: 551-556. doi: 10.1016/j.jcis.2004.12.006
    [23] Acton O, Ting G, Ma H, et al. (2008) π‐σ‐Phosphonic acid organic monolayer/sol-gel hafnium oxide hybrid dielectrics for low‐voltage organic transistors. Adv Mater 20: 3697-3701. doi: 10.1002/adma.200800810
    [24] Lu X, Minari T, Kumatani A. et al. (2011) Effect of air exposure on metal/organic interface in organic field-effect transistors. Appl Phys Lett 98: 243301. doi: 10.1063/1.3599056
    [25] Di C, Yu G, Liu Y, et al. (2008) Efficient modification of Cu electrode with nanometer-sized copper tetracyanoquinodimethane for high performance organic field-effect transistors. Phys Chem Chem Phys 10: 2302-2307. doi: 10.1039/b718935d
    [26] Gu W, Jin W, Wei B, at al. (2010) High-performance organic field-effect transistors based on copper/copper sulphide bilayer source-drain electrodes. Appl Phys Lett 97: 243303. doi: 10.1063/1.3526737
    [27] Su Y, Wang C, Xie W, et al. (2011) Low-voltage organic field-effect transistors (OFETs) with solution-processed metal-oxide as gate dielectric. ACS Appl Mater Interfaces 3: 4662-4667. doi: 10.1021/am201078v
    [28] Su Y, Xie W, Li Y, et al. (2013) A low-temperature, solution-processed high-k dielectric for low-voltage, high-performance organic field-effect transistors (OFETs). J Phys D Appl Phys 46: 095105. doi: 10.1088/0022-3727/46/9/095105
    [29] Su Y, Ouyang M, Liu P, et al. (2013) Insights into the interfacial properties of low-voltage CuPc field-effect transistor. ACS Appl Mater Interfaces 5: 4960-4965. doi: 10.1021/am4006447
    [30] Su Y, Wang M, Xie F, et al. (2013) In situ modification of low-cost Cu electrodes for high-performance low-voltage pentacene thin film transistors (TFTs). Org Electron 14: 775-781. doi: 10.1016/j.orgel.2012.12.025
    [31] Su Y, Xie W, Xu J, (2014) Facile modification of Cu source-drain (S/D) electrodes for high-performance, low-voltage n-channel organic thin film transistors (OTFTs) based on C60. Org Electron 15: 3259-3267.
    [32] Su Y, Jiang J, Ke N, et al. (2013) Low-voltage flexible pentacene thin film transistors with solution-processed dielectric and low-cost source-drain (S/D) electrodes. J Mater Chem C 1: 2585-2592. doi: 10.1039/c3tc00577a
    [33] Forrest S, (1997) Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem Rev 97: 1793-1896. doi: 10.1021/cr941014o
    [34] Yang S, Shin K, Par C, (2015) The effect of gate-dielectric surface energy on pentacene morphology and organic field-effect transistor characteristics. Adv Funct Mater 15: 1806-1814.
    [35] Gao J, Xu J, Zhu M, et al. (2007) Thickness dependence of mobility in CuPc thin film on amorphous SiO2 substrate. J Phys D Appl Phys 40: 5666-5669. doi: 10.1088/0022-3727/40/18/022
    [36] Qi Q, Yu A, Wang L, et al. (2010) Behavior of pentacene initial nucleation on various dielectrics and its effect on carrier transport in organic field-effect transistor. J Nanosci Nanotechnol 10: 7103-7107. doi: 10.1166/jnn.2010.2802
    [37] Chung Y, Verploegen E, Vailionis A, et al. (2011) Controlling electric dipoles in nanodielectrics and its applications for enabling air-stable n-channel organic transistors. Nano Lett 11: 1161-1165. doi: 10.1021/nl104087u
    [38] Nakamura M, Goto N, Ohashi N, et al. (2005) Potential mapping of pentacene thin-film transistors using purely electric atomic-force-microscope potentiometry. Appl Phys Lett 86: 122112. doi: 10.1063/1.1891306
    [39] Wang S, Minari T, Miyadera T, et al. (2007) Bias stress instability in pentacene thin film transistors: contact resistance change and channel threshold voltage shift. Appl Phys Lett 91: 203508. doi: 10.1063/1.2813640
    [40] Kim Y, Jeon D, (2010) Effect of deposition temperature on the morphology and contact resistance of Au on pentacene. J Appl Phys 108: 016101. doi: 10.1063/1.3445268
    [41] Diao L, Frisbie C, Schroepfer D, et al. (2007) Electrical characterization of metal/pentacene contacts. J Appl Phys 101: 014510. doi: 10.1063/1.2424396
    [42] Zaumseil J, Baldwin K, Rogers J, (2003) Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination. J Appl Phys 93: 6117-6124. doi: 10.1063/1.1568157
    [43] Watkins N, Yan L, Gao Y, (2002) Electronic structure symmetry of interfaces between pentacene and metals. Appl Phys Lett 80: 4384. doi: 10.1063/1.1485129
    [44] Kang S, Yi Y, Kim C, et al. (2006) Energy level diagrams of C60/pentacene/Au and pentacene/C60/Au. Synth Met 156: 32-37. doi: 10.1016/j.synthmet.2005.10.001
    [45] Zhang D, Liu Y, Liu Y, et al. (2004) The electrical properties and the interfaces of Cu2O/ZnO/ITO p-i-n heterojunction. Physica B: Cond Mat 351: 178-183. doi: 10.1016/j.physb.2004.06.003
    [46] Tseng C, Cheng Y, Lee M, et al. (2007) Study of anode work function modified by self-assembled monolayers on pentacene/fullerene organic solar cells. Appl Phys Lett 91: 233510. doi: 10.1063/1.2823579
    [47] Zhou Y, Fuentes-Hernandez C, Shim J, et al. (2012) A universal method to produce low-work function rlectrodes for organic electronics. Science 336: 327-332. doi: 10.1126/science.1218829
    [48] Yu Y, Zhao Y, Ryu S, et al. (2009) Tuning the graphene work function by electric field effect. Nano Lett 9: 3430-3434.
    [49] Rentenberger S, Vollmer A, Zojer E, (2006) UV∕ozone treated Au for air-stable, low hole injection barrier electrodes in organic electronics. J Appl Phys 100: 053701. doi: 10.1063/1.2336345
    [50] Scheinert S, Grobosch M, Paasch G, et al. (2012) Contact characterization by photoemission and device performance in P3HT based organic transistors. J Appl Phys 111: 064502. doi: 10.1063/1.3693541
    [51] Shibata K, Ishikawa K, Takezoe H, et al. (2008) Contact characterization by photoemission and device performance in P3HT based organic transistors. Appl Phys Lett 92: 023305. doi: 10.1063/1.2834374
    [52] Kumatani A, Li Y, Darmawan P, et al. (2013) On practical charge injection at the metal/organic semiconductor interface. Sci Rep 3: 1026.
    [53] Heimel G, Romaner L, Bredas J, et al. (2006) Interface energetics and level alignment at covalent metal-molecule Junctions: π-conjugated thiols on gold. Phys Rev Lett 96: 196806. doi: 10.1103/PhysRevLett.96.196806
    [54] Heimel G, Romaner L, Zojer E, et al. (2008) The interface energetics of self-assembled monolayers on metals. Acc Chem Res 41: 721-729. doi: 10.1021/ar700284q
    [55] Li H, Paramonov P, Bredas J, (2010) Theoretical study of the surface modification of indium tin oxide with trifluorophenyl phosphonic acid molecules: impact of coverage density and binding geometry. J Mater Chem 20: 2630-2637. doi: 10.1039/b921768a
    [56] Yang R, Park J, Colesniuc C, et al. (2009) Analyte chemisorption and sensing on n- and p-channel copper phthalocyanine thin-film transistors. J Chem Phys 130: 164703. doi: 10.1063/1.3078036
    [57] Ma H, Acton O, Hutchins D, et al. (2012) Multifunctional phosphonic acid self-assembled monolayers on metal oxides as dielectrics, interface modification layers and semiconductors for low-voltage high-performance organic field-effect transistors. Phys Chem Chem Phys 14: 14110-14126.
    [58] Acton O, Ting G, Ma H, et al. (2008) Low-voltage high-performance C60 thin film transistors via low-surface-energy phosphonic acid monolayer/hafnium oxide hybrid dielectric. Appl Phys Lett 93: 083302. doi: 10.1063/1.2975175
    [59] Colleaux F, Ball J, Wobkenberg P, et al. (2011) Bias-stress effects in organic field-effect transistors based on self-assembled monolayer nanodielectrics. Phys Chem Chem Phys 13: 14387-14393. doi: 10.1039/c1cp20769e
    [60] Nanditha D, Dissanayake M, Hatton R, (2007) Operation of a reversed pentacene-fullerene discrete heterojunction photovoltaic device. Appl Phys Lett 90: 113505. doi: 10.1063/1.2713345
    [61] Chu C, Shrotriya V, Li G, et al. (2006) Tuning acceptor energy level for efficient charge collection in copper-phthalocyanine-based organic solar cells. Appl Phys Lett 88: 153504. doi: 10.1063/1.2194207
    [62] Chu C, Sung C, Kekuda D, et al. (2009) Flexible fullerene field-effect transistors fabricated through solution processing. Adv Mater 21: 4845-4849. doi: 10.1002/adma.200901215
    [63] Ishii H, Hayashi N, Ito E, et. (2004) Kelvin probe study of band bending at organic semiconductor/metal interfaces: examination of Fermi level alignment. Phys Stat Sol A 201: 1075-1094. doi: 10.1002/pssa.200404346
    [64] Kuribara K, Wang H, Uchiyama N, et al. (2012) Organic transistors with high thermal stability for medical applications. Nat Commun 3: 723. doi: 10.1038/ncomms1721
    [65] Kraus M, Richler S, Opitz A, et al. (2010) High-mobility copper-phthalocyanine field-effect transistors with tetratetracontane passivation layer and organic metal contacts. J Appl Phys 107: 094503. doi: 10.1063/1.3354086
    [66] Ramanathan S, Park C, McIntyre P, (2002) Electrical properties of ultrathin zirconia films grown by UV ozone oxidation. J Appl Phys 91: 4521-4527. doi: 10.1063/1.1459103
    [67] Gonon P, El Kamel F, (2007) Dielectric response of Cu/amorphous BaTiO3/Cu capacitors. J Appl Phys 101: 073901. doi: 10.1063/1.2716871
    [68] Klauk H, Zschieschang U, Pflaum J, et al. (2007) Ultralow-power organic complementary circuits. Nature 445: 745-748. doi: 10.1038/nature05533
    [69] Kim S, Yoon W, Jang M, et al. (2012) Damage-free hybrid encapsulation of organic field-effect transistors to reduce environmental instability. J Mater Chem 22: 7731-7738. doi: 10.1039/c2jm13329f
    [70] Yang H, Kim S, Yang L, et al. (2007) Pentacene nanostructures on surface-hydrophobicity-controlled polymer/SiO2 bilayer gate-dielectrics. Adv Mater 19: 2868-2872. doi: 10.1002/adma.200700560
    [71] Yang H, Yang L, Ling M, et al. (2008) Aging susceptibility of terrace-like pentacene films. J Phys Chem C 112: 16161-16165. doi: 10.1021/jp8055224
    [72] Nabok D, Puschnig P, Ambrosch-Draxl C, et al. (2007) Crystal and electronic structures of pentacene thin films from grazing-incidence x-ray diffraction and first-principles calculations. Phys Rev B 76: 235322. doi: 10.1103/PhysRevB.76.235322
    [73] Yang C, Yoon J, Kim S, et al. Bending-stress-driven phase transitions in pentacene thin films for flexible organic field-effect transistors. Appl Phys Lett 92: 243305.
    [74] Kang S, Noh Y, Baeg K, et al. (2008) Effect of rubbed polyimide layer on the field-effect mobility in pentacene thin-film transistors. Appl Phys Lett 92: 052107. doi: 10.1063/1.2830694
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7392) PDF downloads(1333) Cited by(5)

Article outline

Figures and Tables

Figures(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog