Citation: Jens Bürger, Alireza Goudarzi, Darko Stefanovic, Christof Teuscher. Computational capacity and energy consumption of complex resistive switch networks[J]. AIMS Materials Science, 2015, 2(4): 530-545. doi: 10.3934/matersci.2015.4.530
[1] | Chang T, Yang Y, LuW(2013) Building Neuromorphic Circuits with Memristive Devices. Circuits, Systems Magazine, IEEE 13: 56-73. |
[2] | Crutchfield JP, Ditto WL, Sinha S (2010) Introduction to focus issue: intrinsic, designed computation: information processing in dynamical systems-beyond the digital hegemony. Chaos: An Interdisciplinary Journal of Nonlinear Science 20: 037101. doi: 10.1063/1.3492712 |
[3] | Hasegawa T, Ohno T, Terabe K, et al. (2010) Learning Abilities Achieved by a Single Solid-State Atomic Switch. Adv Mater 22: 1831-1834. doi: 10.1002/adma.200903680 |
[4] | Avizienis AV, Sillin HO, Martin-Olmos C, et al. (2012) Neuromorphic atomic switch networks. PLoS ONE 7: e42772. doi: 10.1371/journal.pone.0042772 |
[5] | Sillin HO, Aguilera R, Shieh HH, et al. (2013) A theoretical, experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 24: 384004. doi: 10.1088/0957-4484/24/38/384004 |
[6] | Stieg AZ, Avizienis AV, Sillin HO, et al. (2012) Emergent Criticality in Complex Turing B-Type Atomic Switch Networks. Adv Mater 24: 286-293. doi: 10.1002/adma.201103053 |
[7] | Demis EC, Aguilera R, Sillin HO, et al. (2015) Atomic switch networks - nanoarchitectonic design of a complex system for natural computing. Nanotechnology 26: 204003. doi: 10.1088/0957-4484/26/20/204003 |
[8] | Sporns O (2011) Networks of the Brain. The MIT Press, Cambridge, MA. |
[9] | Chua L (1971) Memristor - The missing circuit element. Circuit Theory, IEEE Transactions on 18: 507-519. doi: 10.1109/TCT.1971.1083337 |
[10] | Strukov DB, Snider GS, Stewart DR, et al. (2008) The missing memristor found. Nature 453: 80-83. doi: 10.1038/nature06932 |
[11] | Jo SH, Chang T, Ebong I, et al. (2010) Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Lett 10: 1297-1301. doi: 10.1021/nl904092h |
[12] | Kim S, Du C, Sheridan P, et al. (2015) Experimental Demonstration of a Second-Order Memristor, Its Ability to Biorealistically Implement Synaptic Plasticity. Nano Lett 15: 2203-2211. doi: 10.1021/acs.nanolett.5b00697 |
[13] | Ohno T, Hasegawa T, Tsuruoka T, et al. (2011) Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater 10: 591-595. doi: 10.1038/nmat3054 |
[14] | Sah MP, Chua LO (2014) Brains Are Made of Memristors. IEEE Circuits, Systems Magazine 14: 12-36. |
[15] | Bürger J, Teuscher C (2013) Variation-tolerant Computing with Memristive Reservoirs. Nanoscale Architectures (NANOARCH), 2013 IEEE/ACM International Symposium on, 1-6. |
[16] | Bürger J, Goudarzi A, Stefanovic D, et al. (2015) Hierarchical Composition of Memristive Networks for Real-Time Computing. Nanoscale Architectures (NANOARCH), 2015 IEEE/ACM International Symposium on, 33-38. |
[17] | Kulkarni MS, Teuscher C (2012) Memristor-based Reservoir Computing. Nanoscale Architectures (NANOARCH), 2012 IEEE/ACM International Symposium on, 226-232. |
[18] | Jaeger H (2001) The “echo state” approach to analysing, training recurrent neural networks - with an Erratum note. GMD Report 148, German National Research Center for Information Technology. |
[19] | Maass W, Natschläger T, Markram H (2002) Real-time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations. Neural Comput 14: 2531-2560. doi: 10.1162/089976602760407955 |
[20] | Hasegawa T, Nayak A, Ohno T, et al. (2011) Memristive operations demonstrated by gap-type atomic switches. Appl Phys A 102: 811-815. doi: 10.1007/s00339-011-6317-0 |
[21] | Chang T, Jo SH, Lu W (2011) Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5: 7669-76. doi: 10.1021/nn202983n |
[22] | Strukov DB, Williams RS (2009) Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl Phys A 94: 515-519. doi: 10.1007/s00339-008-4975-3 |
[23] | Tamura T, Hasegawa T, Terabe K, et al. (2006) Switching Property of Atomic Switch Controlled by Solid Electrochemical Reaction. Jpn J Appl Phys 45: L364-L366. doi: 10.1143/JJAP.45.L364 |
[24] | Chang T, Jo SH, Kim KH, et al. (2011) Synaptic behaviors, modeling of a metal oxide memristive device. Appl Phys A 102: 857-863. |
[25] | Gaba S, Sheridan P, Zhou J, et al. (2013) Stochastic memristive devices for computing, neuromorphic applications. Nanoscale 5: 5872-5878. doi: 10.1039/c3nr01176c |
[26] | Ohno T, Hasegawa T, Nayak A, et al. (2011) Sensory, short-term memory formations observed in a Ag2S gap-type atomic switch. Appl Phys Lett 99: 203108. doi: 10.1063/1.3662390 |
[27] | Stieg AZ, Avizienis AV, Sillin HO, et al. (2014) Self-organized atomic switch networks. Jpn J Appl Phys 53: 0-6. |
[28] | Litovski V, Zwolinski M (1997) VLSI Circuit Simulation and Optimization. Chapman & Hall, London, UK. |
[29] | Rabinovich M, Huerta R, Laurent G (2008) Transient Dynamics for Neural Processing. Science 321: 48-50. doi: 10.1126/science.1155564 |
[30] | Buonomano DV, Maass W (2009) State-dependent computations: spatiotemporal processing in cortical networks. Nat Rev Neurosci 10: 113-125. doi: 10.1038/nrn2558 |
[31] | Bertschinger N, Natschläger T (2004) Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput 16: 1413-1436. doi: 10.1162/089976604323057443 |
[32] | Langton CG (1990) Computation at the edge of chaos: Phase transitions and emergent computation. Physica D: Nonlinear Phenomena 42: 12-37. doi: 10.1016/0167-2789(90)90064-V |
[33] | Snyder D, Goudarzi A, Teuscher C (2013) Computational capabilities of random automata networks for reservoir computing. Phys Rev E 87: 042808. doi: 10.1103/PhysRevE.87.042808 |
[34] | Bishop CM (2006) Pattern Recognition, Machine Learning (Information Science, Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA. |
[35] | Honey CJ, Thivierge JP, Sporns O (2010) Can structure predict function in the human brain? NeuroImage 52: 766-776. doi: 10.1016/j.neuroimage.2010.01.071 |
[36] | Shah MM, Hammond RS, Hoffman DA (2010) Dendritic ion channel trafficking , plasticity. Trends Neurosci 33: 307-316. doi: 10.1016/j.tins.2010.03.002 |