Citation: Maryam Khal, Abdellah Algouti, Ahmed Algouti, Nadia Akdim, Sergey A. Stankevich, Massimo Menenti. Evaluation of open Digital Elevation Models: estimation of topographic indices relevant to erosion risk in the Wadi M’Goun watershed, Morocco[J]. AIMS Geosciences, 2020, 6(2): 231-257. doi: 10.3934/geosci.2020014
[1] | Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. No. OSU/DGSS-355, Ohio State University. |
[2] | Müller-wohlfeil DI, lahmer W, krysanova V, et al. (1996) Topography-based hydrological modeling in the Elbe River drainage basin. In: Third International Conference/Workshop on Integrating GIS and Environmental Modeling, National Center for Geographic Information and Analysis, C.A, Santa Fe. |
[3] | Mark DM, Smith B (2004) A science of topography: from qualitative ontology to digital representations. In: Bishop MP, Shroder JF (Eds.), Geographic Information Science and Mountain Geomorphology, Springer-Praxis, Chichester, England, 75-97. |
[4] | Khal M, Algouti Ab, Algouti A (2018) Modeling of Water Erosion in the M'Goun Watershed Using OpenGIS Software. In: World Academy of Science, Engineering and Technology International Journal of Computer and Systems Engineering, 12: 1102-1106. |
[5] | Mcluckie D, NFRAC (2008) Flood risk management in Australia. Aust J Emerg Manag 23: 21-27. |
[6] | Ait Mlouk M, Algouti Ab, Algouti Ah, et al. (2018) Assessment of river bank erosion in semi-arid climate regions using remote sensing and GIS data: a case study of Rdat River, Marrakech, Morocco. Estud Geol 74: 81. doi: 10.3989/egeol.43217.493 |
[7] | Williams J (2009) Weather Forecasting. The AMS Weather Book: The Ultimate Guide to America's Weather. American Meteorological Society, Boston, MA. doi: 10.1007/978-1-935704-55-3 |
[8] | Da ros D, Borga M (1997) Use of digital elevation model data for the derivation of the geomorphological instantaneous unit hydrograph. Hydrol Process 11: 13-33. doi: 10.1002/(SICI)1099-1085(199701)11:1<13::AID-HYP400>3.0.CO;2-M |
[9] | Tesfa TK, Tarboton DG, Watson DW, et al. (2011) Extraction of hydrological proximity measures from DEMs using parallel processing. Environ Model Softw 26: 1696-1709. doi: 10.1016/j.envsoft.2011.07.018 |
[10] | Jobin T, Prasannakumar V (2015) Comparison of basin morphometry derived from topographic maps, ASTER and SRTM DEMs: an example from Kerala, India. Geocarto Int 30: 346-364. doi: 10.1080/10106049.2014.955063 |
[11] | Kishan SR, Anil KM, Vinay KS, et al. (2012) Comparative evaluation of horizontal accuracy of elevations of selected ground control points from ASTER and SRTM DEM with respect to CARTOSAT-1 DEM: a case study of Shahjahanpur district, Uttar Pradesh, India. Geocarto Int 28: 439-452. |
[12] | Tian Y, Lei S, Bian Z, et al. (2018) Improving the Accuracy of Open Source Digital Elevation Models with Multi-Scale Fusion and a Slope Position-Based Linear Regression Method. Remote Sens 10: 1861. doi: 10.3390/rs10121861 |
[13] | Cuartero A, Felicsimo AM, Ariza FJ (2004) Accuracy of DEM generation from TERRA-ASTER stereo data. Int Arch Photogramm Remote Sens 35: 559-563. |
[14] | Day T, Muller J (1988) Quality assessment of digital elevation models produced by automatic stereo-matchers from SPOT image pairs. Photogramm Rec 12: 797-808. doi: 10.1111/j.1477-9730.1988.tb00630.x |
[15] | Fujisada H (1994) Overview of ASTER instrument on EOS-AM1 platform. In: Proceedings of SPIE, 2268: 14-36. doi: 10.1117/12.185838 |
[16] | Toutin T (2008) ASTER DEMs for geomatic and geoscientific applications. Int J Remote Sens 29: 1855-1875. doi: 10.1080/01431160701408477 |
[17] | Bolstad PV, Stowe T (1994) An evaluation of DEM accuracy: elevation, slope, and aspect. Photogramm Eng Remote Sens 60: 1327-1332. |
[18] | Blöschl G, Sivapalan M (1995) Scale issues in hydrological modelling: A review. Hydrol Process 9: 251-290. doi: 10.1002/hyp.3360090305 |
[19] | Vijith H, Seling LW, Dodge-Wan D (2015) Comparison and Suitability of SRTM and ASTER Digital Elevation Data for Terrain Analysis and Geomorphometric Parameters: Case Study of Sungai PatahSubwatershed (Baram River, Sarawak, Malaysia). Environ Res Eng Manag 71: 23-35. doi: 10.5755/j01.erem.71.3.12566 |
[20] | Beven KJ, Moore ID (1993) Terrain analysis and distributed modelling in hydrology. New York: Wiley. |
[21] | Wang XH, Yin ZY (1998) A comparison of drainage networks derived from digital elevation models at two scales. J Hydrol 210: 221-241. doi: 10.1016/S0022-1694(98)00189-9 |
[22] | Wang W, Yang X, Yao T (2012) Evaluation of ASTER GDEM and SRTM and their suitability in hydraulic modelling of a glacial lake outburst flood in southeast Tibet. Hydrol Process 26: 213-225. doi: 10.1002/hyp.8127 |
[23] | Nikolakopoulos KG, Kamaratakis EK, Chrysoulakis N (2006) SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece. Int J Remote Sens 27: 4819-4838. doi: 10.1080/01431160600835853 |
[24] | Pryde JK, Osorio J, Wolfe ML, et al. (2007) USGS. An ASABE Meeting Presentation Paper Number: 072093, Minneapolis Convention Center Minneapolis, Minnesota, June; 072093. |
[25] | Jing C, Shortridge A, Lin S, et al. (2014) Comparison and validation of SRTM and ASTER GDEM for a subtropical landscape in Southeastern China. Int J Digit Earth 7: 969-992. doi: 10.1080/17538947.2013.807307 |
[26] | Dewitt JD, Warner TA, Conley JF (2015) Comparison of DEMS derived from USGS DLG, SRTM, a statewide photogrammetry program, ASTER GDEM and LiDAR: implications for change detection. GIScience Remote Sens 52: 179-197. doi: 10.1080/15481603.2015.1019708 |
[27] | Moudrý V, Lecours V, Gdulová K, et al. (2018) On the use of global DEMs in ecological modelling and the accuracy of new bare-earth DEMs. Ecol Modell 383: 3-9. doi: 10.1016/j.ecolmodel.2018.05.006 |
[28] | Zhang K, Gann D, Ross M, et al. (2019) Comparison of TanDEM-X DEM with LiDAR Data for Accuracy Assessment in a Coastal Urban Area. Remote Sens 11: 876. doi: 10.3390/rs11070876 |
[29] | Kinsey-Henderson AE, Wilkinson SN (2012) Evaluating Shuttle radar and interpolated DEMs for slope gradient and soil erosion estimation in low relief terrain. Environ Modell Softw 40: 128-139. doi: 10.1016/j.envsoft.2012.08.010 |
[30] | Lin S, Jing C, Coles NA, et al. (2013) Evaluating DEM source and resolution uncertainties in the Soil and Water Assessment Tool. Stoch Environ Res Risk Assess 27: 209-221. doi: 10.1007/s00477-012-0577-x |
[31] | Williams JR, Berndt HD (1977) Sediment yield prediction based on watershed hydrology. Transactions of the American Society of Agricultural and Biological Engineers. Trans ASAE 20: 1100-1104. doi: 10.13031/2013.35710 |
[32] | Rexer M, Hirt C (2014) Comparison of free high-resolution digital elevation data sets (ASTER GDEM2, SRTM v2.1/v4.1) and validation against accurate heights from the Australian National Gravity Database. Aust J Earth Sci 61: 213-226. |
[33] | Renard KG, Foster GR, Weesies GA, et al. (1997) Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). Agriculture Handbook, U.S. Department of Agriculture, No 703, 404. |
[34] | Prasuhn V, Liniger H, Gisler S, et al. (2013) A high-resolution soil erosion risk map of Switzerland as strategic policy support system. Land Use Policy 32: 281-291. doi: 10.1016/j.landusepol.2012.11.006 |
[35] | Mondal A, Khare D, Kundu S, et al. (2016) Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs. Geosci Front 8: 425-436. doi: 10.1016/j.gsf.2016.03.004 |
[36] | Mondal A, Khare D, Kundu S (2017) Uncertainty analysis of soil erosion modelling using different resolution of open-source DEMs. Geocarto Int 32: 334-349. doi: 10.1080/10106049.2016.1140822 |
[37] | Uhlemann S, Thieken AH, Merz B (2014) A quality assessment framework for natural hazard event documentation: application to trans-basin flood reports in Germany. Nat Hazards Earth Syst Sci 14: 189-208. doi: 10.5194/nhess-14-189-2014 |
[38] | USGS (2006) Earth Resources Observation and Science. Available from: https://www.usgs.gov/centers/eros. |
[39] | Wang L, Liu H (2006) An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. Int J Geogr Inf Sci 20: 193-213. doi: 10.1080/13658810500433453 |
[40] | Das A, Agrawala R, Mohan S (2015) Topographic correction of ALOS-PALSAR images using InSAR-derived DEM. Geocarto Int 30: 145-153. |
[41] | Jäger R, Kaminskis J, Balodis J (2012) Determination of Quasi-geoid as Height Component of the Geodetic Infrastructure for GNSS-Positioning Services in the Baltic States. Latv J Phys Tech Sci 49: 2. |
[42] | Ghilani CD, Wolf PR (2006) Adjustment Computations: Spatial Data Analysis, 4th Edition, John Wiley & Sons, Hoboken. |
[43] | Al-Fugara A (2015) Comparison and Validation of the Recent Freely Available DEMs over Parts of the Earth's Lowest Elevation Area: Dead Sea, Jordan. Int J Geosci 6: 1221-1232. doi: 10.4236/ijg.2015.611096 |
[44] | Shaw EM (1988) Van Nostrand Reinhold International, London, United Kingdom. Hydrology in practice. |
[45] | Strahler AN (1964) Quantitative geomorphology of drainage basin and channel network. In Chow VT (ed), Handbook of Applied Hydrology, McGrawHill, NewYork, NY, USA. |
[46] | Wanielista MP, Kersten R, Eaglin R (1997) Hydrology: Water Quantity and Quality Control, Wiley, New York. |
[47] | Musy A (2001) Ecole Polytechnique Fédérale, Lausanne, Suisse, e-drologie. |
[48] | Roche M (1963) Hydrologie de Surface. Gauthier-Villars, Paris, 140: 659. |
[49] | Horton RE (1945) Erosional development of streams and their drainage basins: hydro physical approach to quantitative morphology. Geol Soc Am Bull 56: 275-370. doi: 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2 |
[50] | Strahler AN (1952) Hypsometric analysis of erosional topography. Bull Geol Soc Am 63: 1117-1142. doi: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2 |
[51] | Schumm SA (1956) Evolution of drainage systems and slopes in badlands at perth amboy, new jersey. Geol Soc Am Bull 67: 597-646. doi: 10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2 |
[52] | Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24: 43-69. doi: 10.1080/02626667909491834 |
[53] | Pandey A, Chowdary VM, Mal BC (2007) Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resour Manage 21: 729-746. doi: 10.1007/s11269-006-9061-z |
[54] | Freeman TG (1991) Calculating Catchment Area With Divergent Flow Based on a Regular Grid. Comput Geosci 17: 413-422. doi: 10.1016/0098-3004(91)90048-I |
[55] | Kamp U, Bolch T, Olsenholler J (2005) Geomorphometry of Cerro Sillajhuay (Andes, Chile/Bolivia): Comparison of digital elevation models (DEMs) from ASTER remote sensing data and contour maps. Geocarto Int 20: 23-33. doi: 10.1080/10106040508542333 |
[56] | Datta PS, Schack-Kirchner H (2010) Erosion Relevant Topographical Parameters Derived from Different DEMs-A Comparative Study from the Indian Lesser Himalayas. Remote Sens 2: 1941-1961. doi: 10.3390/rs2081941 |
[57] | Luo W (1998) Hypsometric analysis with a geographic information system. Comput Geosci 24: 815-821. doi: 10.1016/S0098-3004(98)00076-4 |
[58] | Vaze J, Teng J, Spencer G (2010) Impact of DEM accuracy and resolution on topographic indices. Environ Modell Softw 25: 1086-1098. doi: 10.1016/j.envsoft.2010.03.014 |
[59] | Holmes KW, Chadwick OA, Kyriankidis PC (2000) Error in USGS 30-meter digital elevation model and its impact on terrain modelling. J Hydrol 233: 154-173. doi: 10.1016/S0022-1694(00)00229-8 |
[60] | Huggel C, Schneider D, Miranda PJ, et al. (2008) Evaluation of ASTER and SRTM DEM data for lahar modelling: A case study on lahars from Popocatépetl volcano, Mexico. J Volcanol Geotherm Res 170: 99-110. doi: 10.1016/j.jvolgeores.2007.09.005 |
[61] | De Vente J, Poesen J, Govers G, et al. (2009) The implications of data selection for regional erosion and sediment yield modelling. Earth Surf Process Landf 34: 1994-2007. doi: 10.1002/esp.1884 |
[62] | Nitheshnirmal S, Thilagaraj P, Abdul Rahaman S, et al. (2019) Erosion risk assessment through morphometric indices for prioritisation of Arjuna watershed using ALOS-PALSAR DEM. Model Earth Syst Environ 5: 907-924. doi: 10.1007/s40808-019-00578-y |
[63] | Bhakar R, Srivastav SK, Punia M (2010) Assessment of the relative accuracy of aster and SRTM digital elevation models along irrigation channel banks of Indira Gandhi Canal. J Water Land-use Manage 10: 1-11. |
[64] | Hasan A, Pilesjo P, Persson A (2011) The use of LIDAR as a data source for digital elevation models-a study of the relationship between the accuracy of digital elevation models and topographical attributes in northern peatlands. Hydrol Earth Syst Sci Discuss 8: 5497-5522. doi: 10.5194/hessd-8-5497-2011 |