Let $ \overrightarrow{G} $ be a finite simple directed graph with $ n $ vertices, and let $ \Gamma $ be a finite abelian group of order $ n $. A $ \Gamma $-distance magic labeling is a bijection $ \varphi:V(\overrightarrow{G})\longrightarrow \Gamma $ for which there exists $ c\in\Gamma $ such that $ \sum_{y\in N^+(x)}\varphi(y)-\sum_{y\in N^-(x)}\varphi(y) = c $ for any $ x\in V(\overrightarrow{G}) $, where $ N^+(x) $ and $ N^-(x) $ denote the set of the head and the tail of $ x $, respectively. In this paper, we obtain a necessary and sufficient condition for that there exists a $ \Gamma $-distance magic labeling for the Cartesian products of two directed cycles.
Citation: Guixin Deng, Li Wang, Caimei Luo. Group distance magic labeling of the Cartesian product of two directed cycles[J]. Electronic Research Archive, 2025, 33(6): 4014-4026. doi: 10.3934/era.2025178
Let $ \overrightarrow{G} $ be a finite simple directed graph with $ n $ vertices, and let $ \Gamma $ be a finite abelian group of order $ n $. A $ \Gamma $-distance magic labeling is a bijection $ \varphi:V(\overrightarrow{G})\longrightarrow \Gamma $ for which there exists $ c\in\Gamma $ such that $ \sum_{y\in N^+(x)}\varphi(y)-\sum_{y\in N^-(x)}\varphi(y) = c $ for any $ x\in V(\overrightarrow{G}) $, where $ N^+(x) $ and $ N^-(x) $ denote the set of the head and the tail of $ x $, respectively. In this paper, we obtain a necessary and sufficient condition for that there exists a $ \Gamma $-distance magic labeling for the Cartesian products of two directed cycles.
| [1] | D. Froncek, Group distance magic labeling of Cartesian product of cycles, Australas. J. Comb., 55 (2013), 167–174. |
| [2] |
S. Cichacz, P. Dyrlaga, D. Froncek, Group distance magic Cartesian product of two cycles, Discrete Math., 343 (2020), 111807. https://doi.org/10.1016/j.disc.2019.111807 doi: 10.1016/j.disc.2019.111807
|
| [3] |
X. Zeng, G. Deng, C. Luo, Characterize group distance magic labeling of Cartesian product of two cycles, Discrete Math., 346 (2023), 113407. https://doi.org/10.1016/j.disc.2023.113407 doi: 10.1016/j.disc.2023.113407
|
| [4] | B. Freyberg, M. Keranen, Orientable $\mathbb{Z}_n$-distance magic labeling of the Cartesian product of two cycles, Australas. J. Comb., 69 (2017), 222–235. |
| [5] |
S. Cichacz, B. Freyberg, D. Froncek, Orientable $\mathbb{Z}_N$-distance magic graphs, Discuss. Math. Graph Theory, 39 (2019), 533–546. https://doi.org/10.7151/dmgt.2094 doi: 10.7151/dmgt.2094
|
| [6] |
P. Dyrlaga, K. Szopa, Orientable $\mathbb{Z}_n$-distance magic regular graphs, AKCE Int. J. Graphs Comb., 18 (2021), 60–63. https://doi.org/10.1016/j.akcej.2019.06.005 doi: 10.1016/j.akcej.2019.06.005
|
| [7] | B. Freyberg, M. Keranen, Orientable $\mathbb{Z}_n$-distance magic graphs via products, Australas. J. Comb., 70 (2018), 319–328. |
| [8] | K. H. Rosen, Elementary Number Theory and Its Applications, 6th edition, Addison Wesley, 2010. |