Research article

Group distance magic labeling of the Cartesian product of two directed cycles

  • Received: 25 March 2025 Revised: 26 May 2025 Accepted: 06 June 2025 Published: 24 June 2025
  • Let $ \overrightarrow{G} $ be a finite simple directed graph with $ n $ vertices, and let $ \Gamma $ be a finite abelian group of order $ n $. A $ \Gamma $-distance magic labeling is a bijection $ \varphi:V(\overrightarrow{G})\longrightarrow \Gamma $ for which there exists $ c\in\Gamma $ such that $ \sum_{y\in N^+(x)}\varphi(y)-\sum_{y\in N^-(x)}\varphi(y) = c $ for any $ x\in V(\overrightarrow{G}) $, where $ N^+(x) $ and $ N^-(x) $ denote the set of the head and the tail of $ x $, respectively. In this paper, we obtain a necessary and sufficient condition for that there exists a $ \Gamma $-distance magic labeling for the Cartesian products of two directed cycles.

    Citation: Guixin Deng, Li Wang, Caimei Luo. Group distance magic labeling of the Cartesian product of two directed cycles[J]. Electronic Research Archive, 2025, 33(6): 4014-4026. doi: 10.3934/era.2025178

    Related Papers:

  • Let $ \overrightarrow{G} $ be a finite simple directed graph with $ n $ vertices, and let $ \Gamma $ be a finite abelian group of order $ n $. A $ \Gamma $-distance magic labeling is a bijection $ \varphi:V(\overrightarrow{G})\longrightarrow \Gamma $ for which there exists $ c\in\Gamma $ such that $ \sum_{y\in N^+(x)}\varphi(y)-\sum_{y\in N^-(x)}\varphi(y) = c $ for any $ x\in V(\overrightarrow{G}) $, where $ N^+(x) $ and $ N^-(x) $ denote the set of the head and the tail of $ x $, respectively. In this paper, we obtain a necessary and sufficient condition for that there exists a $ \Gamma $-distance magic labeling for the Cartesian products of two directed cycles.



    加载中


    [1] D. Froncek, Group distance magic labeling of Cartesian product of cycles, Australas. J. Comb., 55 (2013), 167–174.
    [2] S. Cichacz, P. Dyrlaga, D. Froncek, Group distance magic Cartesian product of two cycles, Discrete Math., 343 (2020), 111807. https://doi.org/10.1016/j.disc.2019.111807 doi: 10.1016/j.disc.2019.111807
    [3] X. Zeng, G. Deng, C. Luo, Characterize group distance magic labeling of Cartesian product of two cycles, Discrete Math., 346 (2023), 113407. https://doi.org/10.1016/j.disc.2023.113407 doi: 10.1016/j.disc.2023.113407
    [4] B. Freyberg, M. Keranen, Orientable $\mathbb{Z}_n$-distance magic labeling of the Cartesian product of two cycles, Australas. J. Comb., 69 (2017), 222–235.
    [5] S. Cichacz, B. Freyberg, D. Froncek, Orientable $\mathbb{Z}_N$-distance magic graphs, Discuss. Math. Graph Theory, 39 (2019), 533–546. https://doi.org/10.7151/dmgt.2094 doi: 10.7151/dmgt.2094
    [6] P. Dyrlaga, K. Szopa, Orientable $\mathbb{Z}_n$-distance magic regular graphs, AKCE Int. J. Graphs Comb., 18 (2021), 60–63. https://doi.org/10.1016/j.akcej.2019.06.005 doi: 10.1016/j.akcej.2019.06.005
    [7] B. Freyberg, M. Keranen, Orientable $\mathbb{Z}_n$-distance magic graphs via products, Australas. J. Comb., 70 (2018), 319–328.
    [8] K. H. Rosen, Elementary Number Theory and Its Applications, 6th edition, Addison Wesley, 2010.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(368) PDF downloads(33) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog