In this paper, we analyze, from the numerical point of view, a new thermoelastic problem involving the so-called Bresse system. The heat conduction is modeled by using the Maxwell-Cattaneo law, which is of hyperbolic type. An existence and uniqueness result and an energy decay property are recalled. Then, fully discrete approximations are introduced by using the finite element method and the implicit Euler scheme. First, we prove that the discrete solution is stable, and secondly, we provide an a priori error analysis. This allows us to conclude the linear convergence under suitable additional regularity on the continuous solution. Finally, numerical results are presented to demonstrate the convergence of the scheme and the behavior of the discrete energy.
Citation: Noelia Bazarra, José R. Fernández, Irea López, María Rodríguez-Damián. Numerical approximation of a Bresse-Maxwell-Cattaneo system[J]. Electronic Research Archive, 2025, 33(6): 3883-3900. doi: 10.3934/era.2025172
In this paper, we analyze, from the numerical point of view, a new thermoelastic problem involving the so-called Bresse system. The heat conduction is modeled by using the Maxwell-Cattaneo law, which is of hyperbolic type. An existence and uniqueness result and an energy decay property are recalled. Then, fully discrete approximations are introduced by using the finite element method and the implicit Euler scheme. First, we prove that the discrete solution is stable, and secondly, we provide an a priori error analysis. This allows us to conclude the linear convergence under suitable additional regularity on the continuous solution. Finally, numerical results are presented to demonstrate the convergence of the scheme and the behavior of the discrete energy.
| [1] | J. A. C. Bresse, Cours de Méchanique Appliquée, Mallet Bachelier, Paris, 1859. |
| [2] | J. E. Lagnese, G. Leugering, E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Birkhauuser, Boston, 1994. |
| [3] |
T. F. Ma, R. Nunes, Singular limit and long-time dynamics of Bresse systems, SIAM J. Math. Anal., 49 (2017), 2468–2495. https://doi.org/10.1137/15M1039894 doi: 10.1137/15M1039894
|
| [4] |
S. Baibeche, L. Bouzetouta, F. Hebhoub, A. Lallouche, Well-posedness and energy decay for Bresse system with microtemperature effects in the presence of delay, SeMA J., 82 (2025), 137–155. https://doi.org/10.1007/s40324-024-00356-6 doi: 10.1007/s40324-024-00356-6
|
| [5] |
H. Li, V. R. Cabanillas, B. Feng, Attractors of a thermoelastic Bresse system with mass diffusion, Z. Angew. Math. Mech., 104 (2024), e202300502. https://doi.org/10.1002/zamm.202300502 doi: 10.1002/zamm.202300502
|
| [6] |
J. E. Muñoz Rivera, M. G. Naso, Pointwise stabilization of Bresse systems, Z. Angew. Math. Phys., 74 (2023), 218. https://doi.org/10.1093/biosci/biae025 doi: 10.1093/biosci/biae025
|
| [7] |
M. I. M. Copetti, T. El Arwadi, J. R. Fernández, M. G. Naso, W. Youssef, Analysis of a contact problem for a viscoelastic Bresse system, ESAIM Math. Model. Num. Anal., 55 (2021), 887–911. https://doi.org/10.1051/m2an/2021015 doi: 10.1051/m2an/2021015
|
| [8] |
N. Bazarra, I. Bochicchio, J. R. Fernández, M. G. Naso, Thermoelastic Bresse system with dual-phase-lag, Z. Angew. Math. Phys., 72 (2021), 102. https://doi.org/10.1007/s00033-021-01536-4 doi: 10.1007/s00033-021-01536-4
|
| [9] |
M. Afilal, A. Guesmia, A. Soufyane, New stability results for a linear thermoelastic Bresse system with second sound, Appl. Math. Optim., 83 (2021), 699–738. https://doi.org/10.1007/s00245-019-09560-7 doi: 10.1007/s00245-019-09560-7
|
| [10] |
M. Afilal, A. Guesmia, A. Soufyane, Stability of a linear thermoelastic Bresse system with second sound under new conditions on the coefficients, Z. Angew. Math. Mech., 103 (2023), e202200275. https://doi.org/10.1002/zamm.202200275 doi: 10.1002/zamm.202200275
|
| [11] |
T. Suzuki, Y. Ueda, Lack of the strict dissipativity and modification for the dissipative Bresse system, J. Differ. Equations, 347 (2023), 24–55. https://doi.org/10.1016/j.jde.2022.11.030 doi: 10.1016/j.jde.2022.11.030
|
| [12] |
F. Alabau-Boussouira, J. E. Muñoz Rivera, D. S. Almeida Júnior, Stability to weak dissipative bresse system, J. Math. Anal. Appl., 374 (2011), 481–498. https://doi.org/10.1016/j.jmaa.2010.07.046 doi: 10.1016/j.jmaa.2010.07.046
|
| [13] |
D. S. Almeida Júnior, Conservative semidiscrete difference schemes for timoshenko systems, J. Appl. Math., 1 (2014), 686421. https://doi.org/10.1155/2014/686421 doi: 10.1155/2014/686421
|
| [14] | J. Wang, X. Jiang, H. Zhang, X. Yang, A new fourth-order nonlinear difference scheme for the nonlinear fourth-order generalized burgers-type equation, J. Appl. Math. Comput., in press. https://doi.org/10.1007/s12190-025-02467-3 |
| [15] |
X. Yang, L. Wu, H. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. https://doi.org/10.1016/j.amc.2023.128192 doi: 10.1016/j.amc.2023.128192
|
| [16] |
F. Dell'Oro, On the stability of Bresse and Timoshenko systems with hyperbolic heat conduction, J. Differ. Equations, 281 (2021), 148–198. https://doi.org/10.1016/j.jde.2021.02.009 doi: 10.1016/j.jde.2021.02.009
|
| [17] |
P. R. de Lima, H. D. Fernández Sare, General condition for exponential stability of thermoelastic Bresse systems with Cattaneo's law, Commun. Pure Appl. Anal., 19 (2020), 3575–3596. https://doi.org/10.3934/cpaa.2020156 doi: 10.3934/cpaa.2020156
|
| [18] | C. Cattaneo, On a form of heat equation which eliminates the paradox of instantenous propagation, C. R. Acad. Sci. Paris, 247 (1958), 431–433. |
| [19] | M. Renardy, W. J. Hrusa, J. A. Nohel, Mathematical Problems in Viscoelasticity, vol. 35 of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific and Technical, New York, 1987. |
| [20] |
Z. Liu, B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 60 (2009), 54–69. https://doi.org/10.1007/s00033-008-6122-6 doi: 10.1007/s00033-008-6122-6
|
| [21] | P. G. Ciarlet, The finite element method for elliptic problems, in Handbook of Numerical Analysis. Vol. II, North-Holland, 1991, 17–352. |
| [22] |
M. Campo, J. R. Fernández, K. L. Kuttler, M. Shillor, J. M. Viaño, Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Comput. Methods Appl. Mech. Eng., 196 (2006), 476–488. https://doi.org/10.1016/j.cma.2006.05.006 doi: 10.1016/j.cma.2006.05.006
|