The focus of this work was to establish relations between Gorenstein projective modules linked by right quasi-Frobenius extensions of rings. As applications, the right quasi-Frobenius extensions of (weakly) Gorenstein algebras, Cohen-Macaulay finite algebras and the Cohen-Macaulay free algebra were studied. Suppose that $ \Gamma $ was a right quasi-Frobenius extension of an Artin algebra $ \Lambda $ with $ \Gamma $ a completely faithful left $ \Lambda $-module. We demonstrated that if $ \Gamma $ exhibited (weakly) Gorenstein properties, then $ \Lambda $ did so. Additionally, under the condition of $ \Gamma $ being a separable extension of $ \Lambda $, the converse became valid.
Citation: Juxiang Sun, Guoqiang Zhao. Gorenstein invariants under right Quasi-Frobenius extensions[J]. Electronic Research Archive, 2025, 33(6): 3561-3570. doi: 10.3934/era.2025158
The focus of this work was to establish relations between Gorenstein projective modules linked by right quasi-Frobenius extensions of rings. As applications, the right quasi-Frobenius extensions of (weakly) Gorenstein algebras, Cohen-Macaulay finite algebras and the Cohen-Macaulay free algebra were studied. Suppose that $ \Gamma $ was a right quasi-Frobenius extension of an Artin algebra $ \Lambda $ with $ \Gamma $ a completely faithful left $ \Lambda $-module. We demonstrated that if $ \Gamma $ exhibited (weakly) Gorenstein properties, then $ \Lambda $ did so. Additionally, under the condition of $ \Gamma $ being a separable extension of $ \Lambda $, the converse became valid.
| [1] |
B. J. Müller, Quasi-Frobenius Erweiterungen I, Math. Z., 85 (1964), 345–368. https://doi.org/10.1007/BF01110680 doi: 10.1007/BF01110680
|
| [2] |
K. Hirata, Separable extensions and centralizers of rings, Nagoya Math. J., 35 (1969), 31–45. https://doi.org/10.1017/S0027763000013003 doi: 10.1017/S0027763000013003
|
| [3] | Y. Iwanaga, On rings with finite self-injective dimension II, Tsukuba J. Math., 4 (1980), 107–113. |
| [4] | M. Auslander, M. Bridger, Stable Module Theory, Memoirs of the American Mathematical Society, 1969. https://doi.org/10.1090/memo/0094 |
| [5] |
E. Enochs, O. Jenda, Gorenstein injective and projective modules, Math. Z., 220 (1995), 611–633. https://doi.org/10.1007/BF02572634 doi: 10.1007/BF02572634
|
| [6] |
Z. Huang, J. Sun, Invariant properties of representations under excellent extensions, J. Algebra, 358 (2012), 87–101. https://doi.org/10.1016/j.jalgebra.2012.03.004 doi: 10.1016/j.jalgebra.2012.03.004
|
| [7] |
C. Huang, Y. Sun, Y. Zhou, Gorenstein homological properties and quasi-Frobenius Bimodules, Bull. Iran. Math. Soc., 48 (2022), 805–817. https://doi.org/10.1007/s41980-021-00548-0 doi: 10.1007/s41980-021-00548-0
|
| [8] |
L. X. Mao, Gorenstein projective, injective and flat modules over trivial ring extensions, J. Algebra Appl., 24 (2025), 2550030. https://doi.org/10.1142/S0219498825500306 doi: 10.1142/S0219498825500306
|
| [9] |
J. X. Sun, G. Q. Zhao, Invariants and constructions of separable equivalences, J. Algebra, 662 (2025), 589–607. https://doi.org/10.1016/j.jalgebra.2024.07.055 doi: 10.1016/j.jalgebra.2024.07.055
|
| [10] |
Z. Zhao, Gorenstein homological invariant properties under Frobenius extensions, Sci. China Math., 62 (2019), 2487–2496. https://doi.org/10.1007/s11425-018-9432-2 doi: 10.1007/s11425-018-9432-2
|
| [11] |
X. Chen, Algebras with radical square zero are either self-injective or CM-free, Proc. Amer. Math. Soc., 140 (2012), 93–98. https://doi.org/10.1090/S0002-9939-2011-10921-3 doi: 10.1090/S0002-9939-2011-10921-3
|
| [12] | F. Anderson, K. Fuller, Rings and Categories of Modules, Springer, 1992. https://doi.org/10.1007/978-1-4684-9913-1 |
| [13] | L. Kadison, New Examples of Frobenius Extensions, American Mathematical Society, 1999. |
| [14] | E. Enochs, O. Jenda, Relative Homological Algebra, Walter de Gruyter, 2011. |
| [15] | J. J. Rotman, An Introduction to Homological Algebra (Second Edition), Springer, 2009. https://doi.org/10.1007/b98977 |
| [16] |
H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189 (2004), 167–193. https://doi.org/10.1016/j.jpaa.2003.11.007 doi: 10.1016/j.jpaa.2003.11.007
|
| [17] |
M. Hoshino, Algebras of finite self-injective dimension, Proc. Amer. Math. Soc., 112 (1991), 619–622. https://doi.org/10.1090/S0002-9939-1991-1047011-8 doi: 10.1090/S0002-9939-1991-1047011-8
|
| [18] |
C. Ringel, P. Zhang, Gorenstein-projective and semi-Gorenstein-projective modules, Algebra Number Theory, 14 (2020), 1–36. https://doi.org/10.2140/ant.2020.14.1 doi: 10.2140/ant.2020.14.1
|
| [19] | Y. Kitamura, On quasi-Frobenius extensions, Math. J. Okayama Univ., 15 (1971), 41–48. |
| [20] |
A. Beligiannis, Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras, J. Algebra, 288 (2005), 137–211. https://doi.org/10.1016/j.jalgebra.2005.02.022 doi: 10.1016/j.jalgebra.2005.02.022
|