Theory article

Gorenstein invariants under right Quasi-Frobenius extensions

  • Received: 24 February 2025 Revised: 01 June 2025 Accepted: 04 June 2025 Published: 10 June 2025
  • The focus of this work was to establish relations between Gorenstein projective modules linked by right quasi-Frobenius extensions of rings. As applications, the right quasi-Frobenius extensions of (weakly) Gorenstein algebras, Cohen-Macaulay finite algebras and the Cohen-Macaulay free algebra were studied. Suppose that $ \Gamma $ was a right quasi-Frobenius extension of an Artin algebra $ \Lambda $ with $ \Gamma $ a completely faithful left $ \Lambda $-module. We demonstrated that if $ \Gamma $ exhibited (weakly) Gorenstein properties, then $ \Lambda $ did so. Additionally, under the condition of $ \Gamma $ being a separable extension of $ \Lambda $, the converse became valid.

    Citation: Juxiang Sun, Guoqiang Zhao. Gorenstein invariants under right Quasi-Frobenius extensions[J]. Electronic Research Archive, 2025, 33(6): 3561-3570. doi: 10.3934/era.2025158

    Related Papers:

  • The focus of this work was to establish relations between Gorenstein projective modules linked by right quasi-Frobenius extensions of rings. As applications, the right quasi-Frobenius extensions of (weakly) Gorenstein algebras, Cohen-Macaulay finite algebras and the Cohen-Macaulay free algebra were studied. Suppose that $ \Gamma $ was a right quasi-Frobenius extension of an Artin algebra $ \Lambda $ with $ \Gamma $ a completely faithful left $ \Lambda $-module. We demonstrated that if $ \Gamma $ exhibited (weakly) Gorenstein properties, then $ \Lambda $ did so. Additionally, under the condition of $ \Gamma $ being a separable extension of $ \Lambda $, the converse became valid.



    加载中


    [1] B. J. Müller, Quasi-Frobenius Erweiterungen I, Math. Z., 85 (1964), 345–368. https://doi.org/10.1007/BF01110680 doi: 10.1007/BF01110680
    [2] K. Hirata, Separable extensions and centralizers of rings, Nagoya Math. J., 35 (1969), 31–45. https://doi.org/10.1017/S0027763000013003 doi: 10.1017/S0027763000013003
    [3] Y. Iwanaga, On rings with finite self-injective dimension II, Tsukuba J. Math., 4 (1980), 107–113.
    [4] M. Auslander, M. Bridger, Stable Module Theory, Memoirs of the American Mathematical Society, 1969. https://doi.org/10.1090/memo/0094
    [5] E. Enochs, O. Jenda, Gorenstein injective and projective modules, Math. Z., 220 (1995), 611–633. https://doi.org/10.1007/BF02572634 doi: 10.1007/BF02572634
    [6] Z. Huang, J. Sun, Invariant properties of representations under excellent extensions, J. Algebra, 358 (2012), 87–101. https://doi.org/10.1016/j.jalgebra.2012.03.004 doi: 10.1016/j.jalgebra.2012.03.004
    [7] C. Huang, Y. Sun, Y. Zhou, Gorenstein homological properties and quasi-Frobenius Bimodules, Bull. Iran. Math. Soc., 48 (2022), 805–817. https://doi.org/10.1007/s41980-021-00548-0 doi: 10.1007/s41980-021-00548-0
    [8] L. X. Mao, Gorenstein projective, injective and flat modules over trivial ring extensions, J. Algebra Appl., 24 (2025), 2550030. https://doi.org/10.1142/S0219498825500306 doi: 10.1142/S0219498825500306
    [9] J. X. Sun, G. Q. Zhao, Invariants and constructions of separable equivalences, J. Algebra, 662 (2025), 589–607. https://doi.org/10.1016/j.jalgebra.2024.07.055 doi: 10.1016/j.jalgebra.2024.07.055
    [10] Z. Zhao, Gorenstein homological invariant properties under Frobenius extensions, Sci. China Math., 62 (2019), 2487–2496. https://doi.org/10.1007/s11425-018-9432-2 doi: 10.1007/s11425-018-9432-2
    [11] X. Chen, Algebras with radical square zero are either self-injective or CM-free, Proc. Amer. Math. Soc., 140 (2012), 93–98. https://doi.org/10.1090/S0002-9939-2011-10921-3 doi: 10.1090/S0002-9939-2011-10921-3
    [12] F. Anderson, K. Fuller, Rings and Categories of Modules, Springer, 1992. https://doi.org/10.1007/978-1-4684-9913-1
    [13] L. Kadison, New Examples of Frobenius Extensions, American Mathematical Society, 1999.
    [14] E. Enochs, O. Jenda, Relative Homological Algebra, Walter de Gruyter, 2011.
    [15] J. J. Rotman, An Introduction to Homological Algebra (Second Edition), Springer, 2009. https://doi.org/10.1007/b98977
    [16] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189 (2004), 167–193. https://doi.org/10.1016/j.jpaa.2003.11.007 doi: 10.1016/j.jpaa.2003.11.007
    [17] M. Hoshino, Algebras of finite self-injective dimension, Proc. Amer. Math. Soc., 112 (1991), 619–622. https://doi.org/10.1090/S0002-9939-1991-1047011-8 doi: 10.1090/S0002-9939-1991-1047011-8
    [18] C. Ringel, P. Zhang, Gorenstein-projective and semi-Gorenstein-projective modules, Algebra Number Theory, 14 (2020), 1–36. https://doi.org/10.2140/ant.2020.14.1 doi: 10.2140/ant.2020.14.1
    [19] Y. Kitamura, On quasi-Frobenius extensions, Math. J. Okayama Univ., 15 (1971), 41–48.
    [20] A. Beligiannis, Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras, J. Algebra, 288 (2005), 137–211. https://doi.org/10.1016/j.jalgebra.2005.02.022 doi: 10.1016/j.jalgebra.2005.02.022
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(479) PDF downloads(35) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog