This paper was focused on global existence for the stochastic nonlinear Schrödinger equation with time-dependent loss/gain, which read $ \mathrm{i}du+(\Delta u+\lambda|u|^\alpha u+ia(t)u)dt = dW $. We proved the global existence and uniqueness of the solution in $ H^1(\mathbb{R}^N) $ through the uniform boundedness of the momentum and energy functionals. The global existence result of the solution for this type of equation depended on the ranges of time-dependent loss/gain coefficient.
Citation: Lijun Miao, Jingwei Yu, Linlin Qiu. On global existence for the stochastic nonlinear Schrödinger equation with time-dependent linear loss/gain[J]. Electronic Research Archive, 2025, 33(6): 3571-3583. doi: 10.3934/era.2025159
This paper was focused on global existence for the stochastic nonlinear Schrödinger equation with time-dependent loss/gain, which read $ \mathrm{i}du+(\Delta u+\lambda|u|^\alpha u+ia(t)u)dt = dW $. We proved the global existence and uniqueness of the solution in $ H^1(\mathbb{R}^N) $ through the uniform boundedness of the momentum and energy functionals. The global existence result of the solution for this type of equation depended on the ranges of time-dependent loss/gain coefficient.
| [1] |
B. Feng, D. Zhao, C. Sun, On the Cauchy problem for the nonlinear Schrödinger equations with time-dependent linear loss/gain, J. Math. Anal. Appl., 416 (2014), 901–923. https://doi.org/10.1016/j.jmaa.2014.03.019 doi: 10.1016/j.jmaa.2014.03.019
|
| [2] |
B. Feng, D. Zhao, C. Sun, The limit behavior of solutions for nonlinear Schrödinger equation including nonlinear loss/gain with variable coefficient, J. Math. Anal. Appl., 405 (2013), 240–251. https://doi.org/10.1016/j.jmaa.2013.04.001 doi: 10.1016/j.jmaa.2013.04.001
|
| [3] | G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, 152nd edition, Cambridge university press, Cambridge, 2014. |
| [4] |
A. de Bouard, A. Debussche, The stochastic nonlinear Schrödinger equation in $H^1$, Stochastic Anal. Appl., 21 (2003), 97–126. https://doi.org/10.1081/SAP-120017534 doi: 10.1081/SAP-120017534
|
| [5] | G. Li, M. Okamoto, T. Tao, Global well-posedness of the energy-critical stochastic nonlinear Schrödinger equation on the three-dimensional torus, preprint, arXiv: 2407.15108. https://doi.org/10.48550/arXiv.2407.15108 |
| [6] |
S. Rajendran, M. Lakshmanan, P. Muruganandam, Matter wave switching in Bose-Einstein condensates via intensity redistribution soliton interactions, J. Math. Phys., 52 (2011), 023515. https://doi.org/10.1063/1.3553182 doi: 10.1063/1.3553182
|
| [7] |
R. Atre, P. K. Pangigrahi, G. S. Agarwal, Class of solitary wave solutions of the one-dimensional Gross-Pitaevskii equation, Phys. Rev. E, 73 (2006), 056611. https://doi.org/10.1103/PhysRevE.73.056611 doi: 10.1103/PhysRevE.73.056611
|
| [8] |
F. Hornung, The nonlinear stochastic Schrödinger equation via stochastic Strichartz estimates, J. Evol. Equ., 18 (2018), 1085–1114. https://doi.org/10.1007/s00028-018-0433-7 doi: 10.1007/s00028-018-0433-7
|
| [9] |
C. Fan, W. Xu, Z. Zhao, Long time behavior of stochastic NLS with a small multiplicative noise, Commun. Math. Phys., 404 (2023), 563–595. https://doi.org/10.1007/s00220-023-04848-w doi: 10.1007/s00220-023-04848-w
|
| [10] |
D. Zhang, Stochastic nonlinear Schrödinger equations in the defocusing mass and energy critical cases, Ann. Appl. Probab., 33 (2023), 3652–3705. https://doi.org/10.1214/22-AAP1903 doi: 10.1214/22-AAP1903
|
| [11] |
I. Ekren, I. Kukavica, M. Ziane, Existence of invariant measures for the stochastic damped Schrödinger equation, Stochastics Partial Differ. Equations: Anal. Comput., 5 (2017), 343–367. https://doi.org/10.1007/s40072-016-0090-1 doi: 10.1007/s40072-016-0090-1
|
| [12] |
Z. Brzeźniak, B. Ferrario, M. Zanella, Ergodic results for the stochastic nonlinear Schrödinger equation with large damping, J. Evol. Equ., 23 (2023), 19. https://doi.org/10.1007/s00028-023-00870-6 doi: 10.1007/s00028-023-00870-6
|
| [13] |
J. Cui, J. Hong, L. Sun, On global existence and blow-up for damped stochastic nonlinear Schrödinger equation, Discret. Contin. Dyn. Syst. - B, 24 (2019), 6837–6854. https://doi.org/10.3934/dcdsb.2019169 doi: 10.3934/dcdsb.2019169
|
| [14] |
H. Jian, B. Liu, A random dispersion Schrödinger equation with nonlinear time-dependent loss/gain, Bull. Korean Math. Soc., 54 (2017), 1195–1219. https://doi.org/10.4134/BKMS.b160330 doi: 10.4134/BKMS.b160330
|
| [15] | T. Cazenave, Semilinear Schrödinger Equations, 10th edition, Courant Institute of Mathematical Sciences, New York, 2003. |
| [16] | T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, 106th edition, American Mathematical Society, 2006. |