Theory article

Subdirect Sums of $ GSD{D_1} $ matrices

  • Received: 29 January 2024 Revised: 20 May 2024 Accepted: 31 May 2024 Published: 19 June 2024
  • The class of generalized $ SD{D_1} \; \left({GSD{D_1}} \right) $ matrices is a new subclass of $ H $-matrices. In this paper, we focus on the subdirect sum of $ GSD{D_1} $ matrices, and some sufficient conditions to ensure that the subdirect sum of $ GSD{D_1} $ matrices with strictly diagonally dominant $ \left({SDD} \right) $ matrices is in the class of $ GSD{D_1} $ matrices are given. Moreover, corresponding examples are given to illustrate our results.

    Citation: Jiaqi Qi, Yaqiang Wang. Subdirect Sums of $ GSD{D_1} $ matrices[J]. Electronic Research Archive, 2024, 32(6): 3989-4010. doi: 10.3934/era.2024179

    Related Papers:

  • The class of generalized $ SD{D_1} \; \left({GSD{D_1}} \right) $ matrices is a new subclass of $ H $-matrices. In this paper, we focus on the subdirect sum of $ GSD{D_1} $ matrices, and some sufficient conditions to ensure that the subdirect sum of $ GSD{D_1} $ matrices with strictly diagonally dominant $ \left({SDD} \right) $ matrices is in the class of $ GSD{D_1} $ matrices are given. Moreover, corresponding examples are given to illustrate our results.



    加载中


    [1] S. M. Fallat, C. R. Johnson, Subdirect sums and positivity classes of matrices, Linear Algebra Appl., 288 (1999), 149–173. https://doi.org/10.1016/s0024-3795(98)10194-5 doi: 10.1016/s0024-3795(98)10194-5
    [2] R. Bru, F. Pedroche, D. B. Szyld, Subdirect sums of $S$-strictly diagonally dominant matrices, Electron. J. Linear Algebra, 15 (2006), 201–209. https://doi.org/10.13001/1081-3810.1230 doi: 10.13001/1081-3810.1230
    [3] R. Bru, F. Pedroche, D. B. Szyld, Subdirect sums of nonsingular $M$-matrices and of their invers-e, Electron. J. Linear Algebra, 13 (2005), 162–174. https://doi.org/10.13001/1081-3810.1159 doi: 10.13001/1081-3810.1159
    [4] A. Frommer, D. B. Szyld, Weighted max norms, splittings, and overlapping additive Schwarz iterations, Numer. Math., 83 (1999), 259–278. https://doi.org/10.1007/s002110050449 doi: 10.1007/s002110050449
    [5] R. Bru, F. Pedroche, D. B. Szyld, Additive Schwarz iterations for Markov chains, SIAM J. Matrix Anal. Appl., 27 (2005), 445–458. https://doi.org/10.1137/040616541 doi: 10.1137/040616541
    [6] X. Y. Chen, Y. Q. Wang, Subdirect Sums of $SDD_1$ Matrices, J. Math., 2020 (2020), 1–20. https://doi.org/10.1155/2020/3810423 doi: 10.1155/2020/3810423
    [7] Y. T. Li, X. Y. Chen, Y. Liu, L. Gao, Y. Q. Wang, Subdirect sums of doubly strictly diagonally dominant matrices, J. Math., 2021 (2021), 3810423. https://doi.org/10.1155/2021/6624695 doi: 10.1155/2021/6624695
    [8] C. Q. Li, Q. L. Liu, L. Gao, Y. T. Li, Subdirect sums of Nekrasov matrices, Linear Multilinear A., 64 (2016), 208–218. https://doi.org/10.1080/03081087.2015.1032198 doi: 10.1080/03081087.2015.1032198
    [9] J. Xue, C. Q. Li, Y. T. Li, On subdirect sums of Nekrasov matrices, Linear Multilinear A., 72 (2023), 1044–1055. https://doi.org/10.1080/03081087.2023.2172378 doi: 10.1080/03081087.2023.2172378
    [10] Z. H. Lyu, X. R. Wang, L. S. Wen, $k$-subdirect sums of Nekrasov matrices, Electron. J. Linear Al., 38 (2022), 339–346. https://doi.org/10.13001/ela.2022.6951 doi: 10.13001/ela.2022.6951
    [11] L. Gao, H. Huang, C. Q. Li, Subdirect sums of $QN$-matrices, Linear Multilinear A., 68 (2020), 1605–1623. https://doi.org/10.1080/03081087.2018.1551323 doi: 10.1080/03081087.2018.1551323
    [12] Q. L. Liu, J. F. He, L. Gao, C. Q. Li, Note on subdirect sums of $SDD(p)$ matrices, Linear Multilinear A., 70 (2022), 2582–2601. https://doi.org/10.1080/03081087.2020.1807457 doi: 10.1080/03081087.2020.1807457
    [13] C. Q. Li, R. D. Ma, Q. L. Liu, Y. Li, Subdirect sums of weakly chained diagonally dominant matrices, Linear Multilinear A., 65 (2017), 1220–1231. https://doi.org/10.1080/03081087.2016.1233933 doi: 10.1080/03081087.2016.1233933
    [14] L. Gao, Y. Liu, On $OBS$ matrices and $OBS-B$ matrices, Bull. Iran. Math. Soc., 48 (2022), 2807–2824. https://doi.org/10.1007/s41980-021-00669-6 doi: 10.1007/s41980-021-00669-6
    [15] J. Xia, Note on subdirect sums of $\left\{ {i_0} \right\}$-Nekrasov matrices, AIMS Math., 7 (2022), 617–631. https://doi.org/10.3934/math.2022039 doi: 10.3934/math.2022039
    [16] L. Gao, Q. L. Liu, C. Q. Li, Y. T. Li, On $\{ p_1, p_2\}$-Nekrasov matrices, Bull. Malays. Math. Sci. Soc., 44 (2021), 2971–2999. https://doi.org/10.1007/s40840-021-01094-y doi: 10.1007/s40840-021-01094-y
    [17] L. Liu, X. Y. Chen, Y. T. Li, Y. Q. Wang, Subdirect sums of Dashnic-Zusmanovich matrices, B. Sci. Math., 173 (2021), 103057. https://doi.org/10.1016/j.bulsci.2021.103057 doi: 10.1016/j.bulsci.2021.103057
    [18] C. M. Araújo, S. Mendes-Gonçalves, On a class of nonsingular matrices containing $B$-matrices, Linear Algebra Appl., 578 (2019), 356–369. https://doi.org/10.1016/j.laa.2019.05.015 doi: 10.1016/j.laa.2019.05.015
    [19] C. M. Araújo, J. R. Torregrosa, Some results on $B$-matrices and doubly $B$-matrices, Linear Algebra Appl., 459 (2014), 101–120. https://doi.org/10.1016/j.laa.2014.06.048 doi: 10.1016/j.laa.2014.06.048
    [20] P. F. Dai, J. P. Li, S. Y. Zhao, Infinity norm bounds for the inverse for $GSDD_1$ matrices using scaling matrices, Comput. Appl. Math., 42 (2023), 121. https://doi.org/10.1007/s40314-022-02165-x doi: 10.1007/s40314-022-02165-x
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(424) PDF downloads(30) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog