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Abstract: The class of generalized S DD1 (GS DD1) matrices is a new subclass of H-matrices. In this
paper, we focus on the subdirect sum of GS DD1 matrices, and some sufficient conditions to ensure that
the subdirect sum of GS DD1 matrices with strictly diagonally dominant (S DD) matrices is in the class
of GS DD1 matrices are given. Moreover, corresponding examples are given to illustrate our results.
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1. Introduction

In 1999, the concept of k-subdirect sums of square matrices was proposed by Fallat and Johnson [1],
which is a generalization of the usual sum of matrices [2]. The subdirect sum of matrices plays an
important role in many areas, such as matrix completion problems, global stiffness matrices in finite
elements and overlapping subdomains in domain decomposition methods [1–5].

An important question for subdirect sums is whether the k-subdirect sum of two square matrices in one
class of matrices lies in the same class. This question has attracted widespread attention in different classes
of matrices and produced a variety of results. In 2005, Bru et al. gave sufficient conditions ensuring that
the subdirect sum of two nonsingular M-matrices was also a nonsingular M-matrix [3]. Then the following
year, they further came to the conclusion of the k-subdirect sum of S -S DD matrices is also an S -S DD
matrix [2]. In [6], Chen and Wang succeeded in producing some sufficient conditions that the k-subdirect
sum of S DD1 matrices is an S DD1 matrix. In [7], Li et al. gave some sufficient conditions such that
the k-subdirect sum of doubly strictly diagonally dominant (DS DD) matrices is in the class of DS DD
matrices. In addition, the k-subdirect sum of other classes of matrices were mentioned, such as Nekrasov
matrices [8–10], quasi-Nekrasov (QN) matrices [11], S DD(p) matrices [12], weakly chained diagonally
dominant matrices [13], Ostrowski-Brauer Sparse (OBS ) matrices [14], {i0}-Nekrasov matrices [15],
{p1, p2}-Nekrasov matrices [16], Dashnic-Zusmanovich (DZ) matrices [17], and B-matrices [18, 19].
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GS DD1 matrices as a new subclass of H-matrices was proposed by Dai et al. in 2023 [20]. In this
paper, we focus on the subdirect sum of GS DD1 matrices, and some sufficient conditions such that
the k-subdirect sum of GS DD1 matrices with S DD matrices belong to GS DD1 matrices are given.
Numerical examples are presented to illustrate the corresponding results.

Now, some definitions are listed as follows.

Definition 1.1. ( [2]) Let A and B be two square matrices of order n1 and n2, respectively, and k be an
integer such that 1 ≤ k ≤ min {n1, n2}, and let A and B be partitioned into 2 × 2 blocks as follows:

A =
(

A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, (1.1)

where A22 and B11 are square matrices of order k. Following [1], we call the square matrix of order
n = n1 + n2 − k given by

C =


A11 A12 0
A21 A22 + B11 B12

0 B21 B22


the k-subdirect sum of A and B, denoted by C = A⊕kB. We can use the elements in A and B to represent
any element in C. Before that, let us define the following set of indices:

S 1 = {1, 2, ..., n1 − k} , S 2 = {n1 − k + 1, n1 − k + 2, ..., n1} , S 3 = {n1 + 1, ..., n} . (1.2)

Obviously, S 1 ∪ S 2 ∪ S 3 = N := {1, 2, ..., n} . Denoting C = A⊕kB =
[
ci j

]
, A =

[
ai j

]
and B =

[
bi j

]
, then

ci j =



ai j, i ∈ S 1, j ∈ S 1 ∪ S 2,

0, i ∈ S 1, j ∈ S 3,

ai j, i ∈ S 2, j ∈ S 1,

ai j + bi−n1+k, j−n1+k, i ∈ S 2, j ∈ S 2,

bi−n1+k, j−n1+k, i ∈ S 2, j ∈ S 3,

0, i ∈ S 3, j ∈ S 1,

bi−n1+k, j−n1+k, i ∈ S 3, j ∈ S 2 ∪ S 3.

Definition 1.2. ( [20]) Given a matrix A =
[
ai j

]
∈ Cn×n, where Cn×n is the set of complex matrices. Let

ri (A) =
∑

j∈N, j,i

∣∣∣ai j

∣∣∣, i ∈ N.

NA = { i| |aii| ≤ ri (A)} ,

NA = { i| |aii| > ri (A)} .

It is easy to obtain that NA is the complement of NA in N, i.e., NA = N\NA.
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Definition 1.3. ( [6]) A matrix A =
[
ai j

]
∈ Cn×n is called a strictly diagonally dominant (S DD) matrix if

|aii| > ri(A), i ∈ N.

Definition 1.4. ( [20]) A matrix A =
[
ai j

]
∈ Cn×n is called a GS DD1 matrix if ri (A) > pi

NA (A) , i ∈ NA,(
ri (A) − pi

NA (A)
) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
> pi

NA (A) p j
NA (A) , i ∈ NA, j ∈ NA,

where

pi
NA (A) :=

∑
j∈NA\{i}

∣∣∣ai j

∣∣∣, pi
NA (A) :=

∑
j∈NA\{i}

r j (A)∣∣∣a j j

∣∣∣ ∣∣∣ai j

∣∣∣ , i ∈ N.

Remark 1.1. From Definitions 1.3 and 1.4, it is easy to obtain that if a matrix A is an S DD matrix with
ri(A) > 0, then it is a GS DD1 matrix.

2. Main results

First of all, a counterexample is given to show that the subdirect sum of two GS DD1 matrices may
not necessarily be a GS DD1 matrix.

Example 2.1. Consider the following GS DD1 matrices A and B, where

A =


4 3 2
1 4 3
0 1 3.5

 , B =


2.5 2 0
1 2 1

2.3 1.8 4

 .
and the 1-subdirect sum C = A⊕1B is

C =


4 3 2 0 0
1 4 3 0 0
0 1 6 2 0
0 0 1 2 1
0 0 2.3 1.8 4


.

However, C is not a GS DD1 matrix because(
r3 (C) − p3

NC (C)
) (
|c11| − p1

NC (C)
)
= (3 − 0) (4 − 3) = 3 = 3 × 1 = p3

NC (C) p1
NC (C) .

Example 2.1 shows that the subdirect sum of GS DD1 matrices is not a GS DD1 matrix. Then, a
meaningful discussion is concerned with: under what conditions will the subdirect sum of GS DD1

matrices is in the class of GS DD1 matrices?
In order to obtain the main results, several lemmas are introduced that will be used in the sequel.

Lemma 2.1. If matrix A =
[
ai j

]
∈ Cn×n is a GS DD1 matrix, then

∣∣∣a j j

∣∣∣ − p j
NA (A) > 0 holds for all j ∈ NA.

Electronic Research Archive Volume 32, Issue 6, 3989–4010.



3992

Proof. According to the definition of GS DD1 matrices, we get(
ri (A) − pi

NA (A)
) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
> pi

NA (A) p j
NA (A) .

Since ri (A)− pi
NA (A) > 0, pi

NA (A), and p j
NA (A) are all nonnegative,

∣∣∣a j j

∣∣∣− p j
NA (A) > 0 is obtained.

Lemma 2.2. ( [20]) If A =
[
ai j

]
∈ Cn×n is a GS DD1 matrix, then there is at least one entry ai j , 0,

i , j, i ∈ NA, j ∈ N.

Lemma 2.3. ( [20]) If A =
[
ai j

]
∈ Cn×n is a GS DD1 matrix with NA = ∅, then A is an S DD matrix, and

there is at least one entry ai j , 0, i , j, i ∈ NA, j ∈ NA.

Now, we consider the 1-subdirect sum of GS DD1 matrices.

Theorem 2.1. Let A =
[
ai j

]
and B =

[
bi j

]
be square matrices of order n1 and n2 partitioned as in (1.1),

respectively. And let k = 1, S 1 = {1, 2, . . . , n1 − 1}, S 2 = {n1}, and S 3 = {n1 + 1, n1 + 2, . . . , n1 + n2 − 1}.
We assume that A is a GS DD1 matrix, and B is an S DD matrix with ri (B) > 0 for all i ∈ NB. If all
diagonal entries of A22 and B11 are positive (or all negative), n1 ∈ NA and

rn1 (A)∣∣∣an1,n1

∣∣∣ ≥ rn1 (A) + r1 (B)∣∣∣an1,n1 + b11

∣∣∣ ,
then the 1-subdirect sum C = A⊕1B is a GS DD1 matrix.

Proof. According to the 1-subdirect sum C = A⊕1B, we have

rn1 (C) = rn1 (A) + r1 (B) .

From n1 ∈ NA, we know
∣∣∣an1,n1

∣∣∣ > rn1 (A). Because all diagonal entries of A22 and B11 are positive (or
negative), we have∣∣∣cn1,n1

∣∣∣ = ∣∣∣an1,n1 + b11

∣∣∣ = ∣∣∣an1,n1

∣∣∣ + |b11| > rn1 (A) + r1 (B) = rn1 (C) .

Since A is a GS DD1 matrix, B is an S DD matrix with ri (B) > 0 for all i ∈ NB, C = A⊕1B, and
according to Lemmas 2.2 and 2.3, we know that ri (C) , 0 for all i ∈ NC. Therefore, for any i ∈ NC,

ri (C) =
∑

j∈N\{i}

∣∣∣ci j

∣∣∣ > ∑
j∈NC\{i}

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ =pi
NC (C) .

For any j ∈ NC, we easily get j ∈ NC ∩ S 1 = NA ∩ S 1 ⊂ S 1. For the three different selection ranges of i,
that is, i ∈ NC ∩ S 1 = NA ∩ S 1 ⊂ S 1, i ∈ NC ∩ S 2 = {n1}, and i ∈ NC ∩ S 3 ⊂ S 3, therefore, we divide the
proof into three cases.

Case 1. For i ∈ NC ∩ S 1 = NA ∩ S 1 ⊂ S 1, j ∈ NC, we have

ri (C) = ri (A) ,
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pi
NC (C) =

∑
j∈NC\{i}, j∈S 1

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ + ∑
j∈NC\{i}, j∈S 2

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ + ∑
j∈NC\{i}, j∈S 3

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣
=

∑
j∈NA\{i}, j∈S 1

r j (A)∣∣∣a j j

∣∣∣ ∣∣∣ai j

∣∣∣ + rn1 (A) + r1 (B)∣∣∣an1,n1 + b11

∣∣∣ ∣∣∣ai,n1

∣∣∣ + 0

≤
∑

j∈NA\{i}, j∈S 1

r j (A)∣∣∣a j j

∣∣∣ ∣∣∣ai j

∣∣∣ + rn1 (A)∣∣∣an1,n1

∣∣∣ ∣∣∣ai,n1

∣∣∣
= pi

NA (A) ,

∣∣∣c j j

∣∣∣ = ∣∣∣a j j

∣∣∣ , (2.1)

p j
NC (C) =

∑
j′∈NC\{ j}

∣∣∣c j j′

∣∣∣ = ∑
j′∈NA\{ j}

∣∣∣a j j′

∣∣∣ = p j
NA (A) , (2.2)

pi
NC (C) =

∑
j∈NC\{i}

∣∣∣ci j

∣∣∣ = ∑
j∈NA\{i}

∣∣∣ai j

∣∣∣ = pi
NA (A) ,

p j
NC (C) =

∑
j′∈NC\{ j}, j′∈S 1

r j′ (C)∣∣∣c j′ j′

∣∣∣ ∣∣∣c j j′

∣∣∣ + ∑
j′∈NC\{ j}, j′∈S 2

r j′ (C)∣∣∣c j′ j′

∣∣∣ ∣∣∣c j j′

∣∣∣ + ∑
j′∈NC\{ j}, j′∈S 3

r j′ (C)∣∣∣c j′ j′

∣∣∣ ∣∣∣c j j′

∣∣∣ (2.3)

=
∑

j′∈NA\{ j}, j′∈S 1

r j′ (A)∣∣∣a j′ j′

∣∣∣ ∣∣∣a j j′

∣∣∣ + rn1 (A) + r1 (B)∣∣∣an1,n1 + b11

∣∣∣ ∣∣∣a j,n1

∣∣∣ + 0

≤
∑

j′∈NA\{ j}, j′∈S 1

r j′ (A)∣∣∣a j′ j′

∣∣∣ ∣∣∣a j j′

∣∣∣ + rn1 (A)∣∣∣an1,n1

∣∣∣ ∣∣∣a j,n1

∣∣∣
= p j

NA (A) .

Therefore, we obtain that(
ri (C) − pi

NC (C)
) (∣∣∣c j j

∣∣∣ − p j
NC (C)

)
≥

(
ri (A) − pi

NA (A)
) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
> pi

NA (A) p j
NA (A)

≥ pi
NC (C) p j

NC (C) .

Case 2. For i ∈ NC ∩ S 2 = {n1}, j ∈ NC,

rn1 (C) = rn1 (A) + r1 (B) ,

pn1
NC (C) =

∑
j∈NC\{n1}

∣∣∣cn1, j

∣∣∣ = ∑
j∈NA\{n1}

∣∣∣an1, j

∣∣∣ = pn1
NA (A) .
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pn1
NC (C) =

∑
j∈NC\{n1}, j∈S 1

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣cn1, j

∣∣∣ + ∑
j∈NC\{n1}, j∈S 3

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣cn1, j

∣∣∣
=

∑
j∈NA\{n1}

r j (A)∣∣∣a j j

∣∣∣ ∣∣∣an1, j

∣∣∣ + ∑
j∈NB\{1}

r j (B)∣∣∣b j j

∣∣∣ ∣∣∣b1 j

∣∣∣
= pn1

NA (A) + p1
NB(B).

We know that the results of the
∣∣∣c j j

∣∣∣, p j
NC (C), and p j

NC (C) are the same as (2.1), (2.2), and (2.3). Because
B is an S DD matrix with ri (B) > 0 for all i ∈ NB, we clearly get

r1 (B) − p1
NB (B) > 0.

Hence,(
rn1 (C) − pn1

NC (C)
) (∣∣∣c j j

∣∣∣ − p j
NC (C)

)
=

(
rn1 (A) + r1 (B) − pn1

NA (A) − p1
NB (B)

) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
>

(
rn1 (A) − pn1

NA (A)
) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
> pn1

NA (A) p j
NA (A)

≥ pn1
NC (C) p j

NC (C) .

Case 3. For i ∈ NC ∩ S 3 ⊂ S 3, j ∈ NC, in particular, we obtain that

pi
NC (C) =

∑
j∈NC\{i}

∣∣∣ci j

∣∣∣ = 0.

So we easily come up with(
rn1 (C) − pn1

NC (C)
) (∣∣∣c j j

∣∣∣ − p j
NC (C)

)
=

(
rn1 (C) − pn1

NC (C)
) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
> 0
= pi

NC (C) p j
NC (C) .

From Cases 1–3, we have that for any i ∈ NC and j ∈ NC, the C matrix satisfies the definition of the
GS DD1 matrix. The conclusion is as follows.

Theorem 2.2. Let A =
[
ai j

]
and B =

[
bi j

]
be square matrices of order n1 and n2 partitioned as in (1.1),

respectively. And let k, S 1, S 2, and S 3 be as in Theorem 2.1. Likewise, we assume A is a GS DD1

matrix, and B is an S DD matrix with ri (B) > 0 for all i ∈ NB. If all diagonal entries of A22 and B11

are positive (or all negative), n1 ∈ NA, rn1 (A) + r1 (B) ≥
∣∣∣an1,n1

∣∣∣ + |b11| and

min
2≤l≤n2

(rl(B) − pl
NB(B)) ≥ max

m∈NA

(rm(A) − pm
NA(A)),

min
m∈NA

pm
NA(A) ≥ max

2≤l≤n2
|bl1| ,

then C = A⊕1B is a GS DD1 matrix.
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Proof. Since A is a GS DD1 matrix, B is an S DD matrix with ri (B) > 0 for all i ∈ NB, n1 ∈ NA, and
rn1 (A) + r1 (B) ≥

∣∣∣an1,n1

∣∣∣ + |b11|, we get n1 ∈ NC and then NC = NA.
For any i ∈ NC, by Lemmas 2.2 and 2.3, we have ri (C) , 0 and then

ri (C) =
∑

j∈N\{i}

∣∣∣ci j

∣∣∣ > ∑
j∈NC\{i}

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ =pi
NC (C) .

Since n1 ∈ NC, i.e., i ∈ NC ∩ S 2 = ∅, we prove it according to the two different selection ranges
of i, namely i ∈ NC ∩ S 1 = NA ∩ S 1 ⊂ S 1 and i ∈ NC ∩ S 3 ⊂ S 3. For any j ∈ NC, that is,
j ∈ NC ∩ S 1 = NA ∩ S 1 ⊂ S 1 and j ∈ NC ∩ S 2 = NA ∩ S 2 = {n1}. Therefore, we prove it from the
following cases.

Case 1. For i ∈ NC ∩ S 1 = NA ∩ S 1 ⊂ S 1, j ∈ NC ∩ S 1 = NA ∩ S 1 ⊂ S 1, we obtain that

ri (C) = ri (A) , (2.4)

pi
NC (C) =

∑
j∈NC\{i}, j∈S 1

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ + ∑
j∈NC\{i}, j∈S 3

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ (2.5)

=
∑

j∈NA\{i}

r j (A)∣∣∣a j j

∣∣∣ ∣∣∣ai j

∣∣∣ + 0

= pi
NA (A) ,

∣∣∣c j j

∣∣∣ = ∣∣∣a j j

∣∣∣ , (2.6)

p j
NC (C) =

∑
j′∈NC\{ j}

∣∣∣c j j′

∣∣∣ = ∑
j′∈NA\{ j}

∣∣∣a j j′

∣∣∣ = p j
NA (A) , (2.7)

pi
NC (C) =

∑
j∈NC\{i}

∣∣∣ci j

∣∣∣ = ∑
j∈NA\{i}

∣∣∣ai j

∣∣∣ = pi
NA (A) , (2.8)

p j
NC (C) =

∑
j′∈NC\{ j}, j′∈S 1

r j′ (C)∣∣∣c j′ j′

∣∣∣ ∣∣∣c j j′

∣∣∣ + ∑
j′∈NC\{ j}, j′∈S 3

r j′ (C)∣∣∣c j′ j′

∣∣∣ ∣∣∣c j j′

∣∣∣ (2.9)

=
∑

j′∈NA\{ j}

r j′ (A)∣∣∣a j′ j′

∣∣∣ ∣∣∣a j j′

∣∣∣ + 0

= p j
NA (A) .

Therefore,
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(
ri (C) − pi

NC (C)
) (∣∣∣c j j

∣∣∣ − p j
NC (C)

)
=

(
ri (A) − pi

NA (A)
) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
> pi

NA (A) p j
NA (A)

= pi
NC (C) p j

NC (C) .

Case 2. For i ∈ NC ∩ S 1 = NA ∩ S 1 ⊂ S 1, j ∈ NC ∩ S 2 = NA ∩ S 2 = {n1}, we know that ri (C),
pi

NC (C), and pi
NC (C) have the same results as (2.4), (2.8), and (2.5). Moreover,∣∣∣cn1,n1

∣∣∣ = ∣∣∣an1,n1 + b11

∣∣∣ = ∣∣∣an1,n1

∣∣∣ + |b11| , (2.10)

pn1
NC (C) =

∑
j′∈NC\{n1}

∣∣∣cn1, j′

∣∣∣ = ∑
j′∈NA\{n1}

∣∣∣an1, j′

∣∣∣ = pn1
NA (A) , (2.11)

pn1
NC (C) =

∑
j′∈NC\{n1}, j′∈S 1

r j′ (C)∣∣∣c j′ j′

∣∣∣ ∣∣∣cn1, j′

∣∣∣ + ∑
j′∈NC\{n1}, j′∈S 3

r j′ (C)∣∣∣c j′ j′

∣∣∣ ∣∣∣cn1, j′

∣∣∣ (2.12)

=
∑

j′∈NA\{n1}

r j′ (A)∣∣∣a j′ j′

∣∣∣ ∣∣∣an1, j′

∣∣∣ + ∑
j′∈NB\{1}

r j′ (B)∣∣∣b j′ j′

∣∣∣ ∣∣∣b1 j′

∣∣∣
= pn1

NA (A) + p1
NB (B) .

Hence, we obtain that(
ri (C) − pi

NC (C)
) (∣∣∣cn1,n1

∣∣∣ − pn1
NC (C)

)
=

(
ri (A) − pi

NA (A)
) (∣∣∣an1,n1

∣∣∣ + |b11| − pn1
NA (A)

)
=

(
ri (A) − pi

NA (A)
) (∣∣∣an1,n1

∣∣∣ − pn1
NA (A)

)
+

(
ri (A) − pi

NA(A)
)
· |b11|

> pi
NA (A) pn1

NA (A) + pi
NA (A) p1

NB (B)

= pi
NC (C) pn1

NC (C) .

Case 3. For i ∈ NC ∩ S 3 ⊂ S 3, j ∈ NC ∩ S 1 = NA ∩ S 1 ⊂ S 1, we have

ri (C) = ri−n1+1 (B) = rl(B), (2.13)

pi
NC (C) =

∑
j∈NC\{i}, j∈S 1

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ + ∑
j∈NC\{i}, j∈S 3

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ (2.14)

= 0 +
∑

j∈NB\{l}, j∈{2,...,n2}

r j (B)∣∣∣b j j

∣∣∣ ∣∣∣bl j

∣∣∣
≤ pl

NB (B) ,
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pi
NC (C) =

∑
j∈NC\{i}, j∈S 1

∣∣∣ci j

∣∣∣ + ∑
j∈NC\{i}, j=n1

∣∣∣ci,n1

∣∣∣ = 0 + |bl1| = |bl1| , (2.15)

where l = i− n1 + 1. We have the same values of
∣∣∣c j j

∣∣∣, p j
NC (C), and p j

NC (C) as (2.6), (2.7), and (2.9). Therefore,(
ri (C) − pi

NC (C)
) (∣∣∣c j j

∣∣∣ − p j
NC (C)

)
≥

(
rl (B) − pl

NB (B)
) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
≥

(
rm (A) − pm

NA (A)
) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
> pm

NA (A) p j
NA (A)

≥ |bl1| · p j
NA (A)

= pi
NC (C) p j

NC (C) .

Case 4. For i ∈ NC ∩ S 3 ⊂ S 3, j ∈ NC ∩ S 2 = NA ∩ S 2 = {n1}, we get that the values of ri (C),
pi

NC (C), and pi
NC (C) are the same as (2.13), (2.15), and (2.14). Moreover, the results of

∣∣∣c j j

∣∣∣, p j
NC (C),

and p j
NC (C) are the same as (2.10), (2.11), and (2.12). Hence, we obtain that(

ri (C) − pi
NC (C)

) (∣∣∣cn1,n1

∣∣∣ − pn1
NC (C)

)
≥

(
rl (B) − pl

NB (B)
) (∣∣∣an1,n1

∣∣∣ + |b11| − pn1
NA (A)

)
=

(
rl (B) − pl

NB (B)
)
· |b11|

+
(
rl (B) − pl

NB (B)
) (∣∣∣an1,n1

∣∣∣ − pn1
NA (A)

)
≥

(
rm (A) − pm

NA (A)
)
· |b11|

+
(
rm (A) − pm

NA (A)
) (∣∣∣an1,n1

∣∣∣ − pn1
NA (A)

)
> pm

NA (A) p1
NB (B) + pm

NA (A) pn1
NA (A)

≥ |bl1| ·
(
p1

NB (B) + pn1
NA (A)

)
= pi

NC (C) pn1
NC (C) .

From Cases 1–4, we definitively get that C is a GS DD1 matrix.

The following Example 2.2 shows that Theorem 2.1 may not necessarily hold when k ≥ 2.

Example 2.2. Consider the following matrices:

A =


3 1 1.7 1
1 4 1 1
2 2 4 1
0 1 1 3

 , B =


3 1 1
0 2 1
1 0 3

 ,
where A is a GS DD1 matrix and B is an S DD matrix with ri (B) > 0 for all i ∈ NB. It is easy to verify
that A and B satisfy the conditions of Theorem 2.1 and A⊕1B is a GS DD1 matrix. However, C = A⊕2B
is not a GS DD1 matrix. In fact,

C =


3 1 1.7 1 0
1 4 1 1 0
2 2 7 2 1
0 1 1 5 1
0 0 1 0 3


.
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By computation,

NC = {2, 4, 5} , NC = {1, 3} ,

(
r5 (C) − p5

NC (C)
) (
|c11| − p1

NC (C)
)
= (1 − 0) (3 − 1.7) = 1.3 < 1.35 = 1 × 1.35 = p5

NC (C) p1
NC (C) .

Therefore, C = A⊕2B is not a GS DD1 matrix.

The following Example 2.3 shows that Theorem 2.2 may not necessarily hold when k ≥ 2.

Example 2.3. Consider the following matrices:

A =


5 2 2 1
0 4 0 1
0 0 3 2
1 1 1 2

 , B =


3 −2 0
1 15 4.3

0.9 −5.1 17

 ,
where A is a GS DD1 matrix and B is an S DD matrix with ri (B) > 0 for all i ∈ NB. It is easy to verify
that A and B satisfy the conditions of Theorem 2.2 and A⊕1B is a GS DD1 matrix. However, C = A⊕2B
is not a GS DD1. In fact,

C =


5 2 2 1 0
0 4 0 1 0
0 0 6 0 0
1 1 2 17 4.3
0 0 0.9 −5.1 17


.

By computation, r3 (C) − p3
NC (C) = 0, therefore, C = A⊕2B is not a GS DD1 matrix.

Those are sufficient conditions to ensure that the 1-subdirect sum of GS DD1 matrices with S DD
matrices is a GS DD1 matrix. In fact, as the value of k increases, the situation becomes more complicated,
so that the adequate conditions we give will also be more complicated.

Next, some sufficient conditions ensuring that the k-subdirect (k ≥ 2) sum of GS DD1 matrices with
S DD matrices is a GS DD1 matrix are given.

Theorem 2.3. Let A =
[
ai j

]
and B =

[
bi j

]
be square matrices of order n1 and n2 partitioned as in (1.1),

respectively. And let 2 ≤ k ≤ min {n1, n2}, S 1, S 2, and S 3 be as in (1.2). We assume A is a GS DD1

matrix and B is an S DD matrix with ri (B) > 0 for all i ∈ NB. If all diagonal entries of A22 and B11 are
positive (or all negative), i ∈ NA for any i ∈ S 2 and∑

j∈NA\{i}, j∈S 2

λ j∣∣∣a j j + b j−n1+k, j−n1+k

∣∣∣ ∣∣∣ai j

∣∣∣ ≤ ∑
j∈NA\{i}, j∈S 2

r j (A)∣∣∣a j j

∣∣∣ ∣∣∣ai j

∣∣∣ , (i ∈ S 1 ∪ S 2)

∑
j∈NB\{i−n1+k}

j∈{1,...,k}

λ j+n1−k∣∣∣a j+n1−k, j+n1−k + b j j

∣∣∣ ∣∣∣bi−n1+k, j

∣∣∣ ≤ ∑
j∈NB\{i−n1+k}

j∈{1,...,k}

r j (B)∣∣∣b j j

∣∣∣ ∣∣∣bi−n1+k, j

∣∣∣ , (i ∈ S 2)
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λi ≥ ri (A) + pi−n1+k
NB (B) , (i ∈ S 2)

where λi = ri (A) + ri−n1+k (B) +
n1∑

j=n1−k+1
j,i

∣∣∣ai j + bi−n1+k, j−n1+k

∣∣∣ − n1∑
j=n1−k+1

j,i

(∣∣∣ai j

∣∣∣ + ∣∣∣bi−n1+k, j−n1+k

∣∣∣), then the

k-subdirect sum C = A⊕kB is a GS DD1 matrix.

Proof. Since A is a GS DD1 matrix with i ∈ NA for any i ∈ S 2, we get |aii| > ri(A). According to the
k-subdirect sum C = A⊕kB, we have ri(C) = λi ≤ ri(A) + ri−n1+k(B). Because all diagonal entries
of A22 and B11 are positive (or negative), we get |cii| = |aii| +

∣∣∣bi−n1+k,i−n1+k

∣∣∣ . Therefore, we obtain
that |cii| > ri(C), that is, for any i ∈ S 2, i ∈ NC. Since A is a GS DD1 matrix, B is an S DD matrix
with ri (B) > 0 for all i ∈ NB, and C = A⊕kB, by Lemmas 2.2 and 2.3 we know that ri (C) , 0 for
i ∈ NC ∩S 1∪S 3 = NA∩S 1∪S 3. For i ∈ S 2, by sufficient conditions, we have λi ≥ ri (A)+ pi−n1+k

NB (B),
which means that λi > 0. Therefore, for any i ∈ NC, we obtain that

ri (C) =
∑

j∈N\{i}

∣∣∣ci j

∣∣∣ > ∑
j∈NC\{i}

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ =pi
NC (C) .

Moreover, for any j ∈ NC, we get j ∈ NC ∩ S 1 = NA ∩ S 1 ⊂ S 1. For any i ∈ NC, similarly, we prove it
from the following three cases, which are i ∈ NC ∩ S 1 = NA ∩ S 1 ⊂ S 1, i ∈ NC ∩ S 2 = NA ∩ S 2 ⊂ S 2,
and i ∈ NC ∩ S 3 ⊂ S 3 .

Case 1. For i ∈ NC ∩ S 1 = NA ∩ S 1 ⊂ S 1, j ∈ NC, we have

ri (C) = ri (A) ,

pi
NC (C) =

∑
j∈NC\{i}, j∈S 1

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ + ∑
j∈NC\{i}, j∈S 2

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ + ∑
j∈NC\{i}, j∈S 3

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣
=

∑
j∈NA\{i}, j∈S 1

r j (A)∣∣∣a j j

∣∣∣ ∣∣∣ai j

∣∣∣ + ∑
j∈NA\{i}, j∈S 2

λ j∣∣∣a j j + b j−n1+k, j−n1+k

∣∣∣ ∣∣∣ai j

∣∣∣ + 0

≤
∑

j∈NA\{i}, j∈S 1

r j (A)∣∣∣a j j

∣∣∣ ∣∣∣ai j

∣∣∣ + ∑
j∈NA\{i}, j∈S 2

r j (A)∣∣∣a j j

∣∣∣ ∣∣∣ai j

∣∣∣
= pi

NA (A) ,

∣∣∣c j j

∣∣∣ = ∣∣∣a j j

∣∣∣ , (2.16)

p j
NC (C) =

∑
j′∈NC\{ j}

∣∣∣c j j′

∣∣∣ = ∑
j′∈NA\{ j}

∣∣∣a j j′

∣∣∣ = p j
NA (A) , (2.17)

pi
NC (C) =

∑
j∈NC\{i}

∣∣∣ci j

∣∣∣ = ∑
j∈NA\{i}

∣∣∣ai j

∣∣∣ = pi
NA (A) ,
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p j
NC (C) =

∑
j′∈NC\{ j}, j′∈S 1

r j′ (C)∣∣∣c j′ j′

∣∣∣ ∣∣∣c j j′

∣∣∣ + ∑
j′∈NC\{ j}, j′∈S 2

r j′ (C)∣∣∣c j′ j′

∣∣∣ ∣∣∣c j j′

∣∣∣ + ∑
j′∈NC\{ j}, j′∈S 3

r j′ (C)∣∣∣c j′ j′

∣∣∣ ∣∣∣c j j′

∣∣∣ (2.18)

=
∑

j′∈NA\{ j}, j′∈S 1

r j′ (A)∣∣∣a j′ j′

∣∣∣ ∣∣∣a j j′

∣∣∣ + ∑
j′∈NA\{ j}, j′∈S 2

λ j′∣∣∣a j′ j′ + b j′−n1+k, j′−n1+k

∣∣∣ ∣∣∣a j j′

∣∣∣ + 0

≤
∑

j′∈NA\{ j}, j′∈S 1

r j′ (A)∣∣∣a j′ j′

∣∣∣ ∣∣∣a j j′

∣∣∣ + ∑
j′∈NA\{ j}, j′∈S 2

r j′ (A)∣∣∣a j′ j′

∣∣∣ ∣∣∣a j j′

∣∣∣
= p j

NA (A) .

Therefore, (
ri (C) − pi

NC (C)
) (∣∣∣c j j

∣∣∣ − p j
NC (C)

)
≥

(
ri (A) − pi

NA (A)
) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
> pi

NA (A) p j
NA (A)

≥ pi
NC (C) p j

NC (C) .

Case 2. For i ∈ NC ∩ S 2 = NA ∩ S 2 ⊂ S 2, j ∈ NC, we obtain that

ri (C) = λi,

pi
NC (C) =

∑
j∈NC\{i}, j∈S 1

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ + ∑
j∈NC\{i}, j∈S 2

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ + ∑
j∈NC\{i}, j∈S 3

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣
=

∑
j∈NA\{i}, j∈S 1

r j (A)∣∣∣a j j

∣∣∣ ∣∣∣ai j

∣∣∣ + ∑
j∈NA\{i}, j∈S 2

λ j∣∣∣a j j + b j−n1+k, j−n1+k

∣∣∣ ∣∣∣ai j + bi−n1+k, j−n1+k

∣∣∣
+

∑
j∈NB\{i−n1+k}

j∈{k+1,...,n2}

r j (B)∣∣∣b j j

∣∣∣ ∣∣∣bi−n1+k, j

∣∣∣
≤

∑
j∈NA\{i}, j∈S 1

r j (A)∣∣∣a j j

∣∣∣ ∣∣∣ai j

∣∣∣ + ∑
j∈NA\{i}, j∈S 2

λ j∣∣∣a j j + b j−n1+k, j−n1+k

∣∣∣ ∣∣∣ai j

∣∣∣
+

∑
j∈NA\{i}, j∈S 2

λ j∣∣∣a j j + b j−n1+k, j−n1+k

∣∣∣ ∣∣∣bi−n1+k, j−n1+k

∣∣∣ + ∑
j∈NB\{i−n1+k}

j∈{k+1,...,n2}

r j (B)∣∣∣b j j

∣∣∣ ∣∣∣bi−n1+k, j

∣∣∣
≤

∑
j∈NA\{i}, j∈S 1

r j (A)∣∣∣a j j

∣∣∣ ∣∣∣ai j

∣∣∣ + ∑
j∈NA\{i}, j∈S 2

r j (A)∣∣∣a j j

∣∣∣ ∣∣∣ai j

∣∣∣
+

∑
j∈NB\{i−n1+k}

j∈{1,...,k}

λ j+n1−k∣∣∣a j+n1−k, j+n1−k + b j j

∣∣∣ ∣∣∣bi−n1+k, j

∣∣∣ + ∑
j∈NB\{i−n1+k}

j∈{k+1,...,n2}

r j (B)∣∣∣b j j

∣∣∣ ∣∣∣bi−n1+k, j

∣∣∣
≤ pi

NA (A) +
∑

j∈NB\{i−n1+k}
j∈{1,...,k}

r j (B)∣∣∣b j j

∣∣∣ ∣∣∣bi−n1+k, j

∣∣∣ + ∑
j∈NB\{i−n1+k}

j∈{k+1,...,n2}

r j (B)∣∣∣b j j

∣∣∣ ∣∣∣bi−n1+k, j

∣∣∣
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= pi
NA (A) + pi−n1+k

NB (B) ,

pi
NC (C) =

∑
j∈NC\{i}

∣∣∣ci j

∣∣∣ = ∑
j∈NA\{i}

∣∣∣ai j

∣∣∣ = pi
NA (A) .

We know that
∣∣∣c j j

∣∣∣, p j
NC (C), and p j

NC (C) are the same as (2.16), (2.17), and (2.18). Therefore,(
ri (C) − pi

NC (C)
) (∣∣∣c j j

∣∣∣ − p j
NC (C)

)
≥

(
λi − pi

NA (A) − pi−n1+k
NB (B)

) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
≥ ri(A) + pi−n1+k

NB (B) − pi
NA (A) − pi−n1+k

NB (B)

×
(∣∣∣a j j

∣∣∣ − p j
NA(A)

)
=

(
ri (A) − pi

NA (A)
) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
> pi

NA (A) p j
NA (A)

≥ pi
NC (C) p j

NC (C) .

Case 3. For i ∈ NC ∩ S 3 ⊂ S 3, j ∈ NC, specifically, we obtain that

pi
NC (C) =

∑
j∈NC /{i}

∣∣∣ci j

∣∣∣ = 0.

Hence, (
ri (C) − pi

NC (C)
) (∣∣∣c j j

∣∣∣ − p j
NC (C)

)
=

(
ri (C) − pi

NC (C)
) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
> 0
= pi

NC (C) p j
NC (C) .

Therefore, we get that ri (C) − pi
NC (C) > 0 and

(
ri (C) − pi

NC (C)
) (∣∣∣c j j

∣∣∣ − p j
NC (C)

)
> pi

NC (C) p j
NC (C)

for any i ∈ NC, j ∈ NC.

Corollary 2.1. Let A =
[
ai j

]
and B =

[
bi j

]
be square matrices of order n1 and n2 partitioned as in (1.1),

respectively. And let 2 ≤ k ≤ min {n1, n2}, S 1, S 2, and S 3 be as in (1.2). We assume A is a GS DD1

matrix and B is an S DD matrix with ri (B) > 0 for all i ∈ NB. If all diagonal entries of A22 and B11 are
positive (or all negative), i ∈ NA for any i ∈ S 2 and

λ j∣∣∣a j j + b j−n1+k, j−n1+k

∣∣∣ ≤ min

r j (A)∣∣∣a j j

∣∣∣ , r j−n1+k (B)∣∣∣b j−n1+k, j−n1+k

∣∣∣
 , ( j ∈ S 2)

λi ≥ ri (A) + pi−n1+k
NB (B) ,

where λi is the same as λi of Theorem 2.3 and i ∈ S 2, then the k-subdirect sum C = A⊕kB is a GS DD1 matrix.
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Proof. For the inequality

λi∣∣∣aii + bi−n1+k,i−n1+k

∣∣∣ ≤ ri (A)
|aii|
,

multiplying both sides of this inequality by
∣∣∣ai j

∣∣∣ (i ∈ S 1 ∪ S 2, j , i) and summing for every j ∈ NA\ {i}
( j ∈ S 2), we have ∑

j∈NA\{i}, j∈S 2

λ j∣∣∣a j j + b j−n1+k, j−n1+k

∣∣∣ ∣∣∣ai j

∣∣∣ ≤ ∑
j∈NA\{i}, j∈S 2

r j (A)∣∣∣a j j

∣∣∣ ∣∣∣ai j

∣∣∣ .
Similarly, for i ∈ S 2, we obtain that∑

j∈NB\{i−n1+k}
j∈{1,...,k}

λ j+n1−k∣∣∣a j+n1−k, j+n1−k + b j j

∣∣∣ ∣∣∣bi−n1+k, j

∣∣∣ ≤ ∑
j∈NB\{i−n1+k}

j∈{1,...,k}

r j (B)∣∣∣b j j

∣∣∣ ∣∣∣bi−n1+k, j

∣∣∣ .
By Theorem 2.3, we obtain that the k-subdirect sum C = A⊕kB is a GS DD1 matrix.

Theorem 2.4. Let A =
[
ai j

]
and B =

[
bi j

]
be square matrices of order n1 and n2 partitioned as in (1.1),

respectively. And let 2 ≤ k ≤ min {n1, n2}, S 1, S 2, and S 3 be as in (1.2). We assume A is a GS DD1

matrix and B is an S DD matrix with ri (B) > 0 for all i ∈ NB. If all diagonal entries of A22 and B11 are
positive (or all negative), i ∈ NA for any i ∈ S 2, |aii| +

∣∣∣bi−n1+k,i−n1+k

∣∣∣ ≤ λi and∣∣∣b j−n1+k, j−n1+k

∣∣∣ − ∑
j′∈NB\{ j−n1+k}

j′∈{1,...,k}

∣∣∣a j, j′+n1−k + b j−n1+k, j′

∣∣∣ ≥ p j−n1+k
NB (B) , ( j ∈ S 2)

min
k+1≤l≤n2

(rl(B) − pl
NB(B)) ≥ max

m∈NA

(rm(A) − pm
NA(A)),

min
m∈NA

pm
NA(A) ≥ max

k+1≤l≤n2

∑
j∈{1,...,k}

∣∣∣bl j

∣∣∣,
where λi is the same as λi of Theorem 2.3, then the k-subdirect sum C = A⊕kB is a GS DD1 matrix.

Proof. Since A is a GS DD1 matrix with i ∈ NA for any i ∈ S 2 and |aii| +
∣∣∣bi−n1+k,i−n1+k

∣∣∣ ≤ λi, we have
|aii| ≤ ri (A) and |cii| = |aii| +

∣∣∣bi−n1+k,i−n1+k

∣∣∣ ≤ λi = ri (C), that is, for any i ∈ S 2, we have i ∈ NC .
Moreover, we know that i ∈ NC ∩ S 1 = NA ∩ S 1 ⊂ S 1, which means that NC = NA. Combining
Lemmas 2.2 and 2.3, we get that ri (C) , 0 for i ∈ NC ∩ S 1 ∪ S 3 = NA ∩ S 1 ∪ S 3. Therefore, for any
i ∈ NC, we obtain that

ri (C) =
∑

j∈N\{i}

∣∣∣ci j

∣∣∣ > ∑
j∈NC\{i}

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ = pi
NC (C) .

Since i ∈ NC∩S 2 = ∅, we prove it from the following two aspects, which are i ∈ NC∩S 1 = NA∩S 1 ⊂ S 1

and i ∈ NC∩S 3 ⊂ S 3. For any j ∈ NC, that is, j ∈ NC∩S 1 = NA∩S 1 ⊂ S 1 and j ∈ NC∩S 2 = NA∩S 2 ⊂ S 2.
Therefore, we prove it from the following cases.
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Case 1. For i ∈ NC ∩ S 1 = NA ∩ S 1 ⊂ S 1, j ∈ NC ∩ S 1 = NA ∩ S 1 ⊂ S 1, we get

ri (C) = ri (A) , (2.19)

pi
NC (C) =

∑
j∈NC\{i}, j∈S 1

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ + ∑
j∈NC\{i}, j∈S 3

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ (2.20)

=
∑

j∈NA\{i}

r j (A)∣∣∣a j j

∣∣∣ ∣∣∣ai j

∣∣∣ + 0

= pi
NA (A) ,

∣∣∣c j j

∣∣∣ = ∣∣∣a j j

∣∣∣ , (2.21)

p j
NC (C) =

∑
j′∈NC\{ j}

∣∣∣c j j′

∣∣∣ = ∑
j′∈NA\{ j}

∣∣∣a j j′

∣∣∣ = p j
NA (A) , (2.22)

pi
NC (C) =

∑
j∈NC\{i}

∣∣∣ci j

∣∣∣ = ∑
j∈NA\{i}

∣∣∣ai j

∣∣∣ = pi
NA (A) , (2.23)

p j
NC (C) =

∑
j′∈NC\{ j}, j′∈S 1

r j′ (C)∣∣∣c j′ j′

∣∣∣ ∣∣∣c j j′

∣∣∣ + ∑
j′∈NC\{ j}, j′∈S 3

r j′ (C)∣∣∣c j′ j′

∣∣∣ ∣∣∣c j j′

∣∣∣ (2.24)

=
∑

j′∈NA\{ j}

r j′ (A)∣∣∣a j′ j′

∣∣∣ ∣∣∣a j j′

∣∣∣ + 0

= p j
NA (A) .

Therefore, we obtain that(
ri (C) − pi

NC (C)
) (∣∣∣c j j

∣∣∣ − p j
NC (C)

)
=

(
ri (A) − pi

NA (A)
) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
> pi

NA (A) p j
NA (A)

= pi
NC (C) p j

NC (C) .

Case 2. For i ∈ NC ∩ S 1 = NA ∩ S 1 ⊂ S 1, j ∈ NC ∩ S 2 = NA ∩ S 2 ⊂ S 2, we know that ri (C) and (2.19)
are equal, pi

NC (C) and (2.20) are equal, and pi
NC (C) and (2.23) are equal. Moreover,∣∣∣c j j

∣∣∣ = ∣∣∣a j j + b j−n1+k, j−n1+k

∣∣∣ = ∣∣∣a j j

∣∣∣ + ∣∣∣b j−n1+k, j−n1+k

∣∣∣ , (2.25)

p j
NC (C) =

∑
j′∈NC\{ j}, j′∈S 1

∣∣∣c j j′

∣∣∣ + ∑
j′∈NC\{ j}, j′∈S 2

∣∣∣c j j′

∣∣∣ (2.26)
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=
∑

j′∈NA\{ j}, j′∈S 1

∣∣∣a j j′

∣∣∣ + ∑
j′∈NB\{ j−n1+k}

j′∈{1,...,k}

∣∣∣a j, j′+n1−k + b j−n1+k, j′

∣∣∣,

p j
NC (C) =

∑
j′∈NC\{ j}, j′∈S 1

r j′ (C)∣∣∣c j′ j′

∣∣∣ ∣∣∣c j j′

∣∣∣ + ∑
j′∈NC\{ j}, j′∈S 3

r j′ (C)∣∣∣c j′ j′

∣∣∣ ∣∣∣c j j′

∣∣∣ (2.27)

=
∑

j′∈NA\{ j}

r j′ (A)∣∣∣a j′ j′

∣∣∣ ∣∣∣a j j′

∣∣∣ + ∑
j′∈{k+1,...,n2}

r j′ (B)∣∣∣b j′ j′

∣∣∣ ∣∣∣b j−n1+k, j′

∣∣∣
≤ p j

NA (A) + p j−n1+k
NB (B) .

Hence, (
ri (C) − pi

NC (C)
) (∣∣∣c j j

∣∣∣ − p j
NC (C)

)
=

(
ri (A) − pi

NA (A)
)

×


∣∣∣a j j

∣∣∣ + ∣∣∣b j−n1+k, j−n1+k

∣∣∣ − ∑
j′∈NA\{ j}, j′∈S 1

∣∣∣a j j′

∣∣∣ − ∑
j′∈NB\{ j−n1+k}

j′∈{1,...,k}

∣∣∣a j, j′+n1−k + b j−n1+k, j′

∣∣∣


=
(
ri (A) − pi

NA (A)
) ∣∣∣a j j

∣∣∣ − ∑
j′∈NA\{ j}, j′∈S 1

∣∣∣a j j′

∣∣∣
+

(
ri(A) − pi

NA (A)
) 

∣∣∣b j−n1+k, j−n1+k

∣∣∣ − ∑
j′∈NB\{ j−n1+k}

j′∈{1,...,k}

∣∣∣a j, j′+n1−k + b j−n1+k, j′

∣∣∣


≥
(
ri (A) − pi

NA (A)
) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
+ pi

NA (A) p j−n1+k
NB (B)

> pi
NA (A) p j

NA (A) + pi
NA (A) p j−n1+k

NB (B)

≥ pi
NC (C) p j

NC (C) .

Case 3. For i ∈ NC ∩ S 3 ⊂ S 3, j ∈ NC ∩ S 1 = NA ∩ S 1 ⊂ S 1, we obtain that

ri(C) = ri−n1+k(B) = rl(B), (2.28)

pi
NC (C) =

∑
j∈NC\{i}, j∈S 1

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ + ∑
j∈NC\{i}, j∈S 3

r j (C)∣∣∣c j j

∣∣∣ ∣∣∣ci j

∣∣∣ (2.29)

= 0 +
∑

j∈NB\{l}
j∈{k+1,...,n2}

r j (B)∣∣∣b j j

∣∣∣ ∣∣∣bl j

∣∣∣
≤ pl

NB (B) ,
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pi
NC (C) =

∑
j∈NC\{i}, j∈S 1

∣∣∣ci j

∣∣∣ + ∑
j∈NC\{i}, j∈S 2

∣∣∣ci j

∣∣∣ = 0 +
∑

j∈{1,...,k}

∣∣∣bi−n1+k, j

∣∣∣ = ∑
j∈{1,...,k}

∣∣∣bl j

∣∣∣, (2.30)

where l = i− n1 + k. We know that
∣∣∣c j j

∣∣∣, p j
NC (C), and p j

NC (C) are the same as (2.21), (2.22), and (2.24).
Therefore, (

ri (C) − pi
NC (C)

) (∣∣∣c j j

∣∣∣ − p j
NC (C)

)
≥

(
rl (B) − pl

NB (B)
) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
≥

(
rm (A) − pm

NA (A)
) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
> pm

NA (A) p j
NA (A)

≥
∑

j∈{1,...,k}

∣∣∣bl j

∣∣∣ · p j
NA (A)

= pi
NC (C) p j

NC (C) .

Case 4. For i ∈ NC ∩ S 3 ⊂ S 3, j ∈ NC ∩ S 2 = NA ∩ S 2 ⊂ S 2, we obtain that the values of ri (C), pi
NC (C),

and pi
NC (C) are equal to (2.28), (2.30), and (2.29). Moreover, the results of

∣∣∣c j j

∣∣∣, p j
NC (C), and p j

NC (C)
are the same as (2.25), (2.26), and (2.27). Hence, we arrive at(

ri (C) − pi
NC (C)

) (∣∣∣c j j

∣∣∣ − p j
NC (C)

)
≥

(
rl (B) − pl

NB (B)
)

×


∣∣∣a j j

∣∣∣ + ∣∣∣b j−n1+k, j−n1+k

∣∣∣ −


∑
j′∈NA\{ j}, j′∈S 1

∣∣∣a j j′

∣∣∣ + ∑
j′∈NB\{ j−n1+k}

j′∈{1,...,k}

∣∣∣a j, j′+n1−k + b j−n1+k, j′

∣∣∣



=
(
rl (B) − pl

NB (B)
) ∣∣∣a j j

∣∣∣ − ∑
j′∈NA\{ j}, j′∈S 1

∣∣∣a j j′

∣∣∣
+

(
rl (B) − pl

NB (B)
) 

∣∣∣b j−n1+k, j−n1+k

∣∣∣ − ∑
j′∈NB\{ j−n1+k}

j′∈{1,...,k}

∣∣∣a j, j′+n1−k + b j−n1+k, j′

∣∣∣


≥
(
rm (A) − pm

NA (A)
) (∣∣∣a j j

∣∣∣ − p j
NA (A)

)
+

(
rm (A) − pm

NA (A)
)

p j−n1+k
NB (B)

> pm
NA (A) p j

NA (A) + pm
NA (A) p j−n1+k

NB (B)

= pm
NA (A)

(
p j

NA (A) + p j−n1+k
NB (B)

)
≥

∑
j∈{1,...,k}

∣∣∣bl j

∣∣∣ · (p j
NA (A) + p j−n1+k

NB (B)
)

≥ pi
NC (C) p j

NC (C) .

In conclusion, for any i ∈ NC, j ∈ NC, we successfully derive that ri (C) − pi
NC (C) > 0 and(

ri (C) − pi
NC (C)

) (∣∣∣c j j

∣∣∣ − p j
NC (C)

)
> pi

NC (C) p j
NC (C) . Therefore, C = A⊕kB is a GS DD1 matrix.
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Example 2.4. Consider the following matrices:

A =



7.5 1 2 2 1 2.5
1 7 0.3 1 2 0.2

1.1 1.3 5 1 0.8 1
0.4 1 0.2 6.5 1.2 0.9
0.3 1 0.2 −0.9 6.6 1.4
0.7 0.9 0.1 1.2 −1 8


, B =


65 −1.5 −2 1 1.5
1.2 66 −2.3 1.6 0.9
−1.4 2 67 1.3 1.2

3 3.4 2 66 0.6
0.4 2.1 1 1.8 77


,

where A is a GS DD1 matrix with i ∈ NA for all i ∈ S 2, and B is an S DD matrix with ri (B) > 0 for all
i ∈ NB. By computation, we derive NA = {1, 3} , NA = {2, 4, 5, 6}. Moreover,

λ4

|a44 + b11|
=

5.5
71.5

≈ 0.077 < 0.569 ≈
3.7
6.5
=

r4 (A)
|a44|

,
λ5

|a55 + b22|
=

5.2
72.6

≈ 0.072 < 0.576 ≈
3.8
6.6
=

r5 (A)
|a55|

,

λ6

|a66 + b33|
=

5.4
75
= 0.072 < 0.488 ≈

3.9
8
=

r6 (A)
|a66|

,

we get that
∑

j∈NA\{i}, j∈S 2

λ j

|a j j+b j−n1+k, j−n1+k|

∣∣∣ai j

∣∣∣ ≤ ∑
j∈NA\{i}, j∈S 2

r j(A)

|a j j|

∣∣∣ai j

∣∣∣ is true for i ∈ S 1 ∪ S 2.

λ4

|a44 + b11|
≈ 0.077 < 0.092 ≈

6
65
=

r1 (B)
|b11|

,
λ5

|a55 + b22|
≈ 0.072 < 0.091 ≈

6
66
=

r2 (B)
|b22|

,

λ6

|a66 + b33|
= 0.072 < 0.088 ≈

5.9
67
=

r3 (B)
|b33|

,

we have that the second sufficient condition in Theorem 2.3 is true.

λ4 = 5.5 > 4.252 = 3.7 + 0.552 ≈ r4(A) + p1
NB(B), λ5 = 5.2 > 4.393 = 3.8 + 0.593 ≈ r5(A) + p2

NB(B),

λ6 = 5.4 > 4.471 = 3.9 + 0.571 ≈ r6(A) + p3
NB(B),

we get that the third sufficient condition in Theorem 2.3 is met. Therefore, by Theorem 2.3, C = A⊕3B is
a GS DD1 matrix. In fact,

C =



7.5 1 2 2 1 2.5 0 0
1 7 0.3 1 2 0.2 0 0

1.1 1.3 5 1 0.8 1 0 0
0.4 1 0.2 71.5 −0.3 −1.1 1 1.5
0.3 1 0.2 0.3 72.6 −0.9 1.6 0.9
0.7 0.9 0.1 −0.2 1 75 1.3 1.2
0 0 0 3 3.4 2 66 0.6
0 0 0 0.4 2.1 1 1.8 77


,
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where NC = {1, 3} , NC = {2, 4, 5, 6, 7, 8}. By computation,

r2 (C) = 4.5, p2
NC (C) ≈ 0.235, p2

NC (C) = 1.3; r4 (C) = 5.5, p4
NC (C) ≈ 0.983, p4

NC (C) = 0.6;

r5 (C) = 5.2, p5
NC (C) ≈ 1.011, p5

NC (C) = 0.5; r6 (C) = 5.4, p6
NC (C) ≈ 0.925, p6

NC (C) = 0.8;

r7 (C) = 9, p7
NC (C) ≈ 0.66, p7

NC (C) = 0; r8 (C) = 5.3, p8
NC (C) ≈ 0.499, p8

NC (C) = 0;

|c11| = 7.5, p1
NC (C) = 2, p1

NC (C) ≈ 1.048; |c33| = 5, p3
NC (C) = 1.1, p3

NC (C) ≈ 1.042.

It is not difficult to find that ri(C) − pi
NC (C) > pi

NC (C) and
∣∣∣c j j

∣∣∣ − p j
NC (C) > p j

NC (C) when i ∈ NC,
j ∈ NC. So we deduce that ri (C) > pi

NC (C) and
(
ri (C) − pi

NC (C)
) (∣∣∣c j j

∣∣∣ − p j
NC (C)

)
> pi

NC (C) p j
NC (C)

are true when i ∈ NC, j ∈ NC. Thus, C = A⊕3B is a GS DD1 matrix.

Example 2.5. Consider the following matrices:

A =



6 2 0.5 1 1 0.8 1.2
0.1 8 0.7 0.3 1 1.3 0.8
0.5 0.8 7.7 1.1 1.2 0.3 0.1
2.1 1.5 0.9 8 1.8 0.6 1.7
0.3 0.7 1.4 1 8.4 2.5 2.8
1.6 2.5 2 1 1.7 9.2 1.1
0.8 1.2 1.6 2.4 1.8 1.5 9


, B =



40 2 1 0.7 15 20.8
1.2 45 3 2.5 19 19.2
2.5 2.1 54 1.1 21 26.9
1.8 2.4 0.9 61 25 30.8
0.5 1 1.3 0.2 65 10
1.4 0.4 0.7 0.5 9.9 68


,

where A is a GS DD1 matrix and B is an S DD matrix with ri (B) > 0 for all i ∈ NB. By computation,
NA = {1, 4, 5, 6, 7} , S 2 = {4, 5, 6, 7},

|a44| + |b11| = 48 < 48.1 = λ4, |a55| + |b22| = 53.4 < 53.6 = λ5,

|a66| + |b33| = 63.2 < 63.5 = λ6, |a77| + |b44| = 70 < 70.2 = λ7.

Moreover,

|b11| −
∑

j′∈NB\{1}, j′∈{1,...,4}

∣∣∣a4, j′+3 + b1 j′

∣∣∣ = 32.2 > 10.633 ≈ p1
NB (B) ,

|b22| −
∑

j′∈NB\{2}, j′∈{1,...,4}

∣∣∣a5, j′+3 + b2 j′

∣∣∣ = 32 > 14.101 ≈ p2
NB (B) ,

|b33| −
∑

j′∈NB\{3}, j′∈{1,...,4}

∣∣∣a6, j′+3 + b3 j′

∣∣∣ = 44.5 > 14.965 ≈ p3
NB (B) ,
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|b44| −
∑

j′∈NB\{4}, j′∈{1,...,4}

∣∣∣a7, j′+3 + b4 j′

∣∣∣ = 50.2 > 15.908 ≈ p4
NB (B) .

min
k+1≤l≤n2

(rl(B) − pl
NB(B)) = r6 (B) − p6

NB (B) ≈ 7.944

> 3.836 ≈ r2 (A) − p2
NA (A) = max

m∈NA

(rm(A) − pm
NA(A)),

min
m∈NA

pm
NA(A) = p3

NA (A) = 3.2 > 3 =
∑

j∈{1,...,4}

∣∣∣b5 j

∣∣∣ = ∑
j∈{1,...,4}

∣∣∣b6 j

∣∣∣ = max
k+1≤l≤n2

∑
j∈{1,...,k}

∣∣∣bl j

∣∣∣.
Hence, the conditions in Theorem 2.4 are met. By Theorem 2.4, C = A⊕4B is a GS DD1 matrix. In fact,

C =



6 2 0.5 1 1 0.8 1.2 0 0
0.1 8 0.7 0.3 1 1.3 0.8 0 0
0.5 0.8 7.7 1.1 1.2 0.3 0.1 0 0
2.1 1.5 0.9 48 3.8 1.6 2.4 15 20.8
0.3 0.7 1.4 2.2 53.4 5.5 5.3 19 19.2
1.6 2.5 2 3.5 3.8 63.2 2.2 21 26.9
0.8 1.2 1.6 4.2 4.2 2.4 70 25 30.8
0 0 0 0.5 1 1.3 0.2 65 10
0 0 0 1.4 0.4 0.7 0.5 9.9 68


.

By computation, NC = {1, 4, 5, 6, 7}, NC = {2, 3, 8, 9}. Moreover,

r2 (C) = 4.2, p2
NC (C) ≈ 0.364, p2

NC (C) = 3.5; r3 (C) = 4, p3
NC (C) = 0.42, p3

NC (C) = 3.2;

r8 (C) = 13, p8
NC (C) ≈ 1.897, p8

NC (C) = 3; r9 (C) = 12.9, p9
NC (C) = 1.98, p9

NC (C) = 3.

|c11| = 6, p1
NC (C) = 4, p1

NC (C) ≈ 1.31; |c44| = 48, p4
NC (C) = 9.9, p4

NC (C) ≈ 8.201;

|c55| = 53.4, p5
NC (C) = 13.3, p5

NC (C) ≈ 8.537; |c66| = 63.2, p6
NC (C) = 11.1, p6

NC (C) ≈ 11.655;

|c77| = 70, p7
NC (C) = 11.6, p7

NC (C) ≈ 12.304.

We see that ri(C) − pi
NC (C) > pi

NC (C) and
∣∣∣c j j

∣∣∣ − p j
NC (C) > p j

NC (C) when i ∈ NC, j ∈ NC. Therefore,
we obtain that ri (C) > pi

NC (C) and
(
ri (C) − pi

NC (C)
) (∣∣∣c j j

∣∣∣ − p j
NC (C)

)
> pi

NC (C) p j
NC (C) are true

when i ∈ NC, j ∈ NC. Therefore, C = A⊕4B is a GS DD1 matrix.

Remark 2.1. Since the subdirect sum of matrices does not satisfy the commutative law, if we change “A
is a GS DD1 matrix, and B is an S DD matrix” to “A is an S DD matrix, and B is a GS DD1 matrix”,
then we will obtain new sufficient conditions by using similar proofs in this paper.
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3. Conclusions

In this paper, some sufficient conditions are given to show that the subdirect sum of GS DD1 matrices
with S DD matrices is in the class of GS DD1 matrices, and these conditions are only dependent on the
elements of the given matrices. Furthermore, some numerical examples are also presented to illustrate
the corresponding theoretical results.
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19. C. M. Araújo, J. R. Torregrosa, Some results on B-matrices and doubly B-matrices, Linear Algebra
Appl., 459 (2014), 101–120. https://doi.org/10.1016/j.laa.2014.06.048

20. P. F. Dai, J. P. Li, S. Y. Zhao, Infinity norm bounds for the inverse for GS DD1 matrices using scaling
matrices, Comput. Appl. Math., 42 (2023), 121. https://doi.org/10.1007/s40314-022-02165-x

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 32, Issue 6, 3989–4010.

https://dx.doi.org/https://doi.org/10.13001/ela.2022.6951
https://dx.doi.org/https://doi.org/10.1080/03081087.2018.1551323
https://dx.doi.org/https://doi.org/10.1080/03081087.2020.1807457
https://dx.doi.org/https://doi.org/10.1080/03081087.2016.1233933
https://dx.doi.org/https://doi.org/10.1007/s41980-021-00669-6
https://dx.doi.org/https://doi.org/10.3934/math.2022039
https://dx.doi.org/https://doi.org/10.1007/s40840-021-01094-y
https://dx.doi.org/https://doi.org/10.1016/j.bulsci.2021.103057
https://dx.doi.org/https://doi.org/10.1016/j.laa.2019.05.015
https://dx.doi.org/https://doi.org/10.1016/j.laa.2014.06.048
https://dx.doi.org/https://doi.org/10.1007/s40314-022-02165-x
https://creativecommons.org/licenses/by/4.0

	Introduction
	Main results
	Conclusions

