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Abstract: The class of generalized S DD, (GS DD,) matrices is a new subclass of H-matrices. In this
paper, we focus on the subdirect sum of GS DD, matrices, and some sufficient conditions to ensure that
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1. Introduction

In 1999, the concept of k-subdirect sums of square matrices was proposed by Fallat and Johnson [1],
which is a generalization of the usual sum of matrices [2]. The subdirect sum of matrices plays an
important role in many areas, such as matrix completion problems, global stiffness matrices in finite
elements and overlapping subdomains in domain decomposition methods [1-5].

An important question for subdirect sums is whether the k-subdirect sum of two square matrices in one
class of matrices lies in the same class. This question has attracted widespread attention in different classes
of matrices and produced a variety of results. In 2005, Bru et al. gave sufficient conditions ensuring that
the subdirect sum of two nonsingular M-matrices was also a nonsingular M-matrix [3]. Then the following
year, they further came to the conclusion of the k-subdirect sum of S-S DD matrices is also an S-S DD
matrix [2]. In [6], Chen and Wang succeeded in producing some sufficient conditions that the k-subdirect
sum of S DD, matrices is an S DD; matrix. In [7], Li et al. gave some sufficient conditions such that
the k-subdirect sum of doubly strictly diagonally dominant (DS DD) matrices is in the class of DS DD
matrices. In addition, the k-subdirect sum of other classes of matrices were mentioned, such as Nekrasov
matrices [8—10], quasi-Nekrasov (QN) matrices [11], S DD(p) matrices [12], weakly chained diagonally
dominant matrices [13], Ostrowski-Brauer Sparse (OBS ) matrices [14], {iy}-Nekrasov matrices [15],
{p1, p2}-Nekrasov matrices [16], Dashnic-Zusmanovich (DZ) matrices [17], and B-matrices [18, 19].
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GS DD, matrices as a new subclass of H-matrices was proposed by Dai et al. in 2023 [20]. In this
paper, we focus on the subdirect sum of GS DD; matrices, and some sufficient conditions such that
the k-subdirect sum of GS DD, matrices with S DD matrices belong to GS DD; matrices are given.
Numerical examples are presented to illustrate the corresponding results.

Now, some definitions are listed as follows.

Definition 1.1. ( /2]) Let A and B be two square matrices of order ny and n,, respectively, and k be an
integer such that 1 < k < min {ny, n,}, and let A and B be partitioned into 2 X 2 blocks as follows:

A11 A12 ) ( Bll BlZ )
A= , B= , 1.1
( A21 A22 BZI BZZ ( )

where Ay, and By are square matrices of order k. Following [1], we call the square matrix of order
n=ny +n, —k given by

Ay Ap 0
C=| Ay Apxp+B; Bp
0 By, By,

the k-subdirect sum of A and B, denoted by C = A®;B. We can use the elements in A and B to represent
any element in C. Before that, let us define the following set of indices:

Si1={1,2,...n1 =k}, So={nm—-k+1,n—-k+2,...n1}, S35={n; +1,...n}. (1.2)
Obviously, S{US,US3 =N :={1,2,...,n}. Denoting C = A@;B = [c,-j], A= [a,-j] and B = [bij], then

aij, i€Sy, jGS]USZ,

0, ieSy, jes§s,

ajj, 1€8y JES,

Cij =3 Qij *+ bip sk jom+ks, 1€S2, JES,,
bip sk jm+ks 1€S2, JES3,

0, ieS;3 jes,,

bip sk jom+ks 1€83, jJESL,US3.

Definition 1.2. ( [20]) Given a matrix A = [ai j] € C™", where C™" is the set of complex matrices. Let

rA)= ) lay ieN.

JEN, j#i
Na = {illail < r: (A},
Ny = {illaal > ri (A)}.

It is easy to obtain that Ny is the complement of N, in N, i.e., Ny = N\N,.
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Definition 1.3. ( /6]) A matrix A = [ai J-] € C"™" is called a strictly diagonally dominant (S DD) matrix if
|al~,-| > l"i(A), 1€ N.

Definition 1.4. ( [20]) A matrix A = [aij] € C™" is called a GS DD, matrix if

ri(A) > p™ (A), €Ny, B
(r: ) = p™ () ([aji] = p™ (D) > pM () p* (A), i€ Ny, jeN,

where

— (A
piM(A) = Z lai. P (A) = Z M|Clij|, i €N.

JENA\{} JjeNA\) |ajj|

Remark 1.1. From Definitions 1.3 and 1.4, it is easy to obtain that if a matrix A is an S DD matrix with
ri(A) > 0, then it is a GS DD, matrix.

2. Main results

First of all, a counterexample is given to show that the subdirect sum of two GS DD; matrices may
not necessarily be a GS DD matrix.

Example 2.1. Consider the following GS DD, matrices A and B, where

4 3 2 25 20
A=(1 4 3 |, B=| 1 2 1]
0 1 35 23 18 4

and the 1-subdirect sum C = A®;B is

4 3 2 0 O
14 3 0 O
cC=101 6 2 O
00 1 2 1
0 0 23 18 4

However, C is not a GS DDy matrix because
(3 (©) = P (©)) (len] = 1™ (©) =B =04 =3) =3 =3x 1 = p;" (C) p,* (C).

Example 2.1 shows that the subdirect sum of GS DD, matrices is not a GS DD, matrix. Then, a
meaningful discussion is concerned with: under what conditions will the subdirect sum of GS DD,
matrices is in the class of GS DD, matrices?

In order to obtain the main results, several lemmas are introduced that will be used in the sequel.

Lemma 2.1. If matrix A = [aij] € C"™" is a GS DD, matrix, then |ajj| — p;N(A) > 0 holds for all j € Ny.
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Proof. According to the definition of GS DD, matrices, we get
(i () = p ) (Jay] = p,™ (D) > p™ (A) p ¥ (A).
Since r; (A) — piﬁ (A) >0, p/M(A),and p jN_A (A) are all nonnegative, |a j j| -p jNA (A) > 01s obtained.

Lemma 2.2. ( [20]) If A = [a,-j] € C™" is a GS DD\ matrix, then there is at least one entry a;; # 0,
i#ji€Ny jeN.

Lemma 2.3. ( [20]) IfA = [a,-j] e C™" is a GS DD matrix with Ny = 0, then A is an S DD matrix, and
there is at least one entry a;; # 0, i # j, i € Ny, j € N

Now, we consider the 1-subdirect sum of GS DD; matrices.

Theorem 2.1. Let A = [ai j] and B = [bi j] be square matrices of order n; and n, partitioned as in (1.1),
respectively. And letk =1,5, ={1,2,...,ny =1}, S, ={m}, and S3 ={n; + 1,n; +2,...,n; + n, — 1}.
We assume that A is a GS DDy matrix, and B is an S DD matrix with r;(B) > 0 for all i € Np. If all
diagonal entries of Ay, and By, are positive (or all negative), n; € N, and

Iy (A) 1oy (A) + 71 (B)
- anl,nl + b11| ’

Ay

then the I-subdirect sum C = A® B is a GS DD, matrix.

Proof. According to the 1-subdirect sum C = A®, B, we have

T (C) = ru, (A) + 711 (B).

From n; € N4, we know

Any ny| > Tu, (A). Because all diagonal entries of Ay, and By; are positive (or
negative), we have
| = |@nim + 11| = |auym| + 1111 > 1 (A) + 71 (B) = 1,,, (C).

Since A is a GS DD; matrix, B is an S DD matrix with r; (B) > Of_or all i € Ng, C = A®,B, and
according to Lemmas 2.2 and 2.3, we know that r; (C) # 0 for all i € N¢. Therefore, for any i € N¢,

(C _
ri(C) = Z |Cij| > Z M |Cij| =p" (C).

JEN\(i) jeNG\li) |Cif |

For any j € N¢, we easily get j € Ne NS = Ny NS, C §,. For the three different selection ranges of i,
thatis,i € NeNS1=NsNS; CS1,i € NeNS, ={ni},andi € Nc NS5 C S, therefore, we divide the
proof into three cases.

Case 1.Forie NeNS;=N4sNS, Cc S, j € Nc, we have

ri(C) =ri(A),
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P = Y ISP D ISP D O
JENC\(il.jeS | |ij| JENC\(i}.jeS |ij| JENC\{il.jeS 3 |ij|
_ rj(A) T (A) + 11 (B)
= Z —Ia,’j|+— a;pn, +0

__ .. + |
JENA\{i},j€S |aU| Apy y + b1y

rj(A) Fuy (A)
> ) 2

S ai,n]
JENA\{i}jeS 1 |ajj| nyn
Na
= pit(A),
leiil = lail 2.1
N N,
P ©= D leil= )y laul=p™ @, 22)
J7€Nc\{j} JrENAJ)

pie(C) = Z |Cij| = Z |aij| = pi" (A),

JENC\{i} JENANi}

D 1 (©) e +

JrENC\(jhjreSa |Cf’f'
T'n, (A) + 11 (B)

(2.3)

D 1 (©) i

. il
J1E€NC\{j}.jreS 3 | 1

_ (C
pie(C) = Z rj—()lcjj, "

__“ Ci i
J1€NC\LjbjreS | 7

rj, (A)
- Jaji| + Ajn, | +0
v i . + 1|
JreNa\jhjresy VT ny,ng
< rj’ (A) rnl (A)
= W |a,-j, i (P
JreNa\jLjresy I i

= pM(A).

Therefore, we obtain that

v

((©) = pi¥ (©)) (|ejs] = Y (©) 2 (ri (@) = p™ (W) (|ay| - p™ ()
P (A) pMr (A)

PN (C) pNe (C).

\%

\%

Case2. Forie Ne NS, = {n}, j € N¢,

iy (C) = 1y (A) + 11 (B),

IR CERSY =

JENc\{n1} JENa\{n1}

= pu " (A).

Cny,j An,,j
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PV (C)

S EEEY 5 (©

y Lo

- o] o]
jeNc\im.jes, 1€ jeNc\im).jesy 1€
i (A) i (B)
= Z rlj ”|— anl,j| + Z rljb”|_ |b]j|
jeNavimy 14 jeNs\1y 1777

= pu M (A)+ p N (B).

We know that the results of the |c j.,-|, p;Ne (C), and p,-W (C) are the same as (2.1), (2.2), and (2.3). Because
B is an S DD matrix with r; (B) > 0 for all i € N, we clearly get

r1 (B) — pi"* (B) > 0.
Hence,

(i, (©) = pu ¥ (O)) (|ess] = 2, (©)

(r, (A) + 71 (B) = pu ™ (A) = ™ (B)) (Ja| - p™ (A))
(i (A) = pu ™ () (Jay| - P @A)

P (A) pe (A)

P ¥ (C) pNe (C).

Case 3. Fori e No NS5 C S5, J € N¢, in particular, we obtain that

P @@= > ey =0.

JENC\{i}

\Y

\Y

\%

So we easily come up with

(i, (©) = pu ¥ (©)) (|ejs] = " (©))

(i, (©) = pu ™ (©)) (las| - ™ ()
> 0
i (C) p e ().

From Cases 1-3, we have that for any i € Nc and j € N, the C matrix satisfies the definition of the
GS DD; matrix. The conclusion is as follows.

Theorem 2.2. Let A = [aij] and B = [bij] be square matrices of order n; and n, partitioned as in (1.1),
respectively. And let k, S, S,, and S3 be as in Theorem 2.1. Likewise, we assume A is a GS DD,
matrix, and B is an S DD matrix with r; (B) > 0 for all i € Np. If all diagonal entries of Ay, and By
are positive (or all negative), ny € Ny, 1, (A) + 1, (B) > + |b11| and

Any oy

22}232(1”1(3) - prB(B)) > max(r,,(A) — me(A))’

meN4

: N,
m&pm A(A) > max |b11| ’
meN, 2<I<ny

then C = A® B is a GS DD, matrix.
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Proof. Since A is a GS DD matrix, B is an S DD matrix with r; (B) > O for all i € Nz, n; € Ny, and
n, (A) + 11 (B) > |ap, | + 1011, we get n; € N¢ and then Ne = Ny.
Forany i € Ne, by Lemmas 2.2 and 2.3, we have r; (C) # 0 and then

(C —
RO =) leyl> ) 5 1| = (©).

JeN\{i) JeNeli) e

Since n; € N¢,i.e., i € N_C NS, = 0, we prove it according to the two different selection ranges
of i, namely i € NenS, =NsnNS, cS,andi € NenS; C S5. For any j € Ng, that is,
JENcNS =NsnNSycSyand j e NeNS, = NysN S, = {n}. Therefore, we prove it from the
following cases.

Case 1.Fori€N_cﬂSl =N,NS, CcS1,jeENcNS;=NyNS; CS§4, we obtain that

ri(C) =r1;(A), (2.4)
piﬁ (C) = Z Fj ©) |Cij| + Z r; (&) |Cij| 2.5)
JENC\(i).jeS ICU | JENG\(i).jeS 3 |ij|
= Z —rj (A) |a[j| + O
JENA\i) i
= P,
|ij| = |ajj , (2.6)

P ©= 3 lepl= D lawl=p"@. @7
JreNc\{Jj} JPENAN}
pre@© = > el= D la]=pM @, (2.8)
JENC\i} JENAI}
N~ jr C U C
P = Y O D O 2.9)

! Cisi ! |c~ i
JreNc\Lj}.jreS |f’f’ jreNc\jhjress 1707

rj/ (A)
> o
jreNa\y 177

= ij(A)-

+0

Therefore,

Electronic Research Archive Volume 32, Issue 6, 3989-4010.
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(1 (©) = p ©) (|eis| - P (©)

Case 2. Fori € NeNnsS, =

(r () = p™ (W) (Jajs] - p,™ (W)
P (A) p™ (4)
= p(C)p" ().

\%

NanS,CSy,jeNcNS, =NsNS, = {n}, we know that r, (C),

pi¥ (C), and p;¥c (C) have the same results as (2.4), (2.8), and (2.5). Moreover,

Cnyn

pnlNC (C) =

2,

JreNc\{n1}

pu Y (C) =

2,

JreNc\{m ), jreS

yon@

f ai ;
jr€Na\tnyy 1077

Hence, we obtain that

Cnyi,m

(i (©) = p ©)(

= pn Y (0))

\%

Case 3. ForieN_CﬂS3CS3,j€NCﬂSl

ri(C) = Viepi+1 (B) = r(B),

p(©) =

2

JjeNc\{i},jeS

2

= 0+

JENB\{I}, jel2, ..,

< pe(B),

Electronic Research Archive

= \nm T+ b11| =

cnl ,jl =

T (C)

Cirjr

anl,j/

rj(C)

|ij|

[Pl

+ 1b11l,

Any

(2.10)

2,

JPENA\{n1}

. jo| = ™ (A), @2.11)

rj (C)

2,

jreNc\ini},jreS3

+ Z r]/(B)|b1J,

JjreNp\(1) | J’J’|

ny.jr (2.12)

nl,j/

Jrjr

PV (A) + p ™ (B).

(ri () = p™ @) (
(r: ) = p™ () (|tu,
(ri (A) = p(A)) - by

+ |buil = pa ™ (4))
= pu ™ (4))

Any

P (A) pu ™ (A) + M (A) pi ™ (B)
PN (C) pu, Ve (C) .

=NsNS; CS,, wehave

(2.13)

”j(C)

|ij|

JENC\i},jeS 3

B
rJ( )|b[j|

leif| + i (2.14)

Volume 32, Issue 6, 3989-4010.
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pic (C) = Z |Cij| + Z |Ci,n1

JENc\i},jeS1 JENC\i},j=m

=0+ bnl = Ibul, (2.15)

where [ = i — n; + 1. We have the same values of |c i j|, p jNC (C),and p jN_C (C) as (2.6), 2.7), and (2.9). Therefore,
(1 © = p™ ©) (lesi| - P ©) = (n(B) = p™ (B)(lay] - p, @)

(i (A) = pu™ () (|| - p™ ()

™ (A) p™ (A)

by - ij A)

i (C) p¥ (©).

Case 4. Fori € NeNnSsCSs, je€ NcNS, = NsN S, = {n}, we get that the values of r; (C),
pi (C), and p;"* (C) are the same as (2.13), (2.15), and (2.14). Moreover, the results of |c;;|, p,* (C),

and p Ne (C) are the same as (2.10), (2.11), and (2.12). Hence, we obtain that
J

v v

vV Vv

(:(©) = P (©) (|emam| = P (©) = (ri(B) = pi™ (B)) (|au | + 1b11] = pu™ (A))
= (n®B) - p/” (B))-Ibnl
+ (n® = p™ B) (|aum| - pu™ @A)
> (rn(A) = pu™ (4)) - 111l
+ (1@ = 2™ @) (Jan | = pu™ @A)
> pu™ (A) pi™ (B) + pu™ (A) pu ™ (4)
> |bal- (p1™ (B) + pu,™ (4))

= p () pu " (O).
From Cases 1-4, we definitively get that C is a GS DD matrix.

The following Example 2.2 shows that Theorem 2.1 may not necessarily hold when k > 2.

Example 2.2. Consider the following matrices:

AT v

A: ,B:021,
2 2 4 1 10 3
01 1 3

where A is a GS DD, matrix and B is an S DD matrix with r;(B) > 0 for all i € Ng. It is easy to verify
that A and B satisfy the conditions of Theorem 2.1 and A®;B is a GS DD, matrix. However, C = A®,B
is not a GS DD matrix. In fact,

311710
14 1 10
cC=(22 7 21
01 1 51
00 1 03

Electronic Research Archive Volume 32, Issue 6, 3989-4010.
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By computation,

Nc = {2,4,5}, N¢=1{1,3},

(5 (©) = ps™ (O) (lers] = P (©) = (1= 0) B3 - 1.7) = 1.3 < 1.35 = 1 x 1.35 = ps" (C) p,"* ().

Therefore, C = A®,B is not a GS DD matrix.
The following Example 2.3 shows that Theorem 2.2 may not necessarily hold when k > 2.

Example 2.3. Consider the following matrices:

NN
A= 003 2l B=| 1 15 4.3 |,
1112 09 -51 17

where A is a GS DD, matrix and B is an S DD matrix with r; (B) > 0 for all i € Np. It is easy to verify
that A and B satisfy the conditions of Theorem 2.2 and A®;B is a GS DD, matrix. However, C = A®,B
is not a GS DD;. In fact,

52 2 1 0
04 0 1 0
C=100 6 0 0
11 2 17 43
0 0 09 =51 17

By computation, r; (C) — p3m (C) = 0, therefore, C = A®, B is not a GS DD, matrix.

Those are sufficient conditions to ensure that the 1-subdirect sum of GS DD; matrices with S DD
matrices is a GS DD, matrix. In fact, as the value of k increases, the situation becomes more complicated,
so that the adequate conditions we give will also be more complicated.

Next, some sufficient conditions ensuring that the k-subdirect (k > 2) sum of GS DD, matrices with
S DD matrices is a GS DD matrix are given.

Theorem 2.3. Let A = |a;j| and B = [b,- j] be square matrices of order n; and n, partitioned as in (1.1),
respectively. And let 2 < k < min{n;,ny}, S1, S,, and S3 be as in (1.2). We assume A is a GS DD,
matrix and B is an S DD matrix with r; (B) > 0 for all i € Np. If all diagonal entries of Ay, and By, are
positive (or all negative), i € Ny for anyi € S, and

A; ri(A) ,
Z |aij|s Z —|a,-j, (ieS;US8))
JENA\li},jeS @5 + Bionsonjoms] JENA\lih.jeS a4
Ajn, - (B
Z jHni—k | |bi—n1+k,j| < Z M |bi—n1+k,j| , €Sy

Ajm—k jom—k + bjj - ;)]
| JHn—k,j+n -k 7] JjeNp\li—ni+k} 17/

Electronic Research Archive Volume 32, Issue 6, 3989-4010.
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A= 1 (A) + piy i (B), (i €S5)

I’l

n
where /li = r (A) t Tion +k (B) + |al] + bl —n1+k,j— n1+k| (|alj| + |bl —n1+k,j— n|+k|) then the
j l’ll—k+1 =n|— k 1
JEL J#EI

k-subdirect sum C = A®,B is a GS DD matrix.

Proof. Since A is a GS DD matrix with i € N, for any i € S,, we get |a;| > r;(A). According to the
k-subdirect sum C = A®;B, we have r,(C) = A; < ri(A) + ri_,++(B). Because all diagonal entries
of Ay, and B, are positive (or negative), we get |c;| = |a;| + |bi—n1+k,i—n|+k|- Therefore, we obtain
that |c;;| > r;(C), that is, for oI any i €S, i€ Nc. Since A is a GS DD, matrix, B is an S DD matrix
with h r; (B) > 0 for all i € Ng, and C = A®,B, by Lemmas 2.2 and 2.3 we know that r; (C) i 0 for
i€ NeNS;US;=N,NS,US5. ForiesS,, by sufficient conditions, we have A; > r; (A) + p;i— n1+k 8 (B),
which means that A4; > 0. Therefore, for any i € NC, we obtain that

(C _
RO = > eyl> > M|c,~j| =pi" (C).

JEN\{i} JENC\(i} | jf|

Moreover, for any j € No, we get j € NeNS; =NaNS, cS,. Forany i € N¢, similarly, we prove it
fromthefollowingthreecases,whichareieN_CﬂSl =NsNS,CS1,i€eNcNS,=NsNS,CS»,
andie NeNnS;CSs.

Case 1.Forie NeNS;=N,NS, C Sy, j€ N¢, we have

ri (C) =ri(A),
piﬁ (C) = Z Ty (€) |Cij| + Z Ty (&) |Cij| + Z Ty (&) |Cij|
JENC\(i).jeS e JENC\li).jeS 2 e JENC\(i).jeS 3 e
_ Z I’J (A) | ljl " Z /lj |aij| +0
JENA\i),jeS | | JJ| JENA\i},jeS» | ]J + b} —ny+k,j— n1+k|
< rj (A) rj (A)
= Z — lai] + Z Jai
JENA\li.jeS |ajj | JENA\iLjeS |aff |
= pM (),
|ij| = (2.16)
p© = > lel= D lail=pM" @), (2.17)
JreNEL) JrENA\)
pi(C) = Z |Cij| = Z |Clij| =p"(A),
JENC\i) JENA)

Electronic Research Archive Volume 32, Issue 6, 3989-4010.
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_ 7, (C) r;, (C) riy (C)
N, J! J! J’
IR W D W | D W (AL
jreNc\{j},jres, 17777 JreNc\{j},jreS, 1770 JreNC\(j},jreS 3 Cirjr
ri, (A) A;
J’ ]!
= Z |Cljj, + Z b |Cljj, +0
EN\ULIES) |aj/jr ENA\L].jrES |aj/j/ + j/—n1+k,j/—n1+k|
rj, (A) rj, (A)
J’ J’
<) Tl jas|+ D Yol i
jreNa\ULjresy 1707 JreENA\Ljresy 1707
Ni
= p;i(A).
Therefore,

(1 (©) = p™ (©)) (Jess| - ¥ (©)

\%

\%

(i) = p™ @) (Jay] - p,™ @A)

P (A) p M (A)
piNe (C) pNe (C).

Case2. Forie NeNS,=N,sNS, C S5, j € N¢, we obtain that

ri(C) = 4
PiW <€) = Z M |Cij| + Z M |cij| + Z ﬂ |Cij|
JENC\(i},jeS | jj| JjeNC\(i}, jeS2 | jj| JjeNe\{i),jeS 3 | jj|
r;(A) 4

- >

| | | 1J|+
JENA\li),jeS 1 aji

2

JENA\(i}.jeS»

|Clij + bi—n1+k,j—n1+k|
| jj+bj—n1+k,j—n1+k|

rj (B)
+ | | | i—n1+k,j|
JENs\li—m+k) 177
Jje{k+1,...np}
ri(A) A
< Y W Y R—
_ |a--| _ | + D n+k k|
jeNaiLjesy 177 JENAV.jes 1407 T Dimmithojnit
A, 7 (B)
+ Z | b |bi—n1+k,j—n1+k| + Z Ibz n1+kj|
T YR IN Tool
JeNaVlinjesy 1400 T Dimmithoj=m+k JENs\li—m+k) 1]
Jefk+1... n2}
ri(A) ri(A)
- Tap] o]
jeNavinjes, 147 JENA\li}.jes, 17
Ajiny -k b rj\b) (B) b
+ | b | i—n1+k,j| | lﬂ1+kJ|
T Toal
JeNp\liom +k) |Erm—kjam—k T Ojj JENp\li—m +k) 170
Jell,....k} Jje{k+1,... )12}
— r: (B) ri(B)
N, TR Fj\b)
S pi A(A)+ Z | | |bl n1+kj| Z | | |bl n1+kj|
JENp\i—ny+k) 177 jeNp\li—m+k) 17J]
Jell,....k} ]G{I\+l ,,,,, "2}
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= P (A) + pin i (B),

pie(C) = Z |eif| = Z |ai)| = p™ (A).

JENC\i} JENA\{i}

We know that |c‘,~‘,-

, ijC (0), and p‘,-N_C (C) are the same as (2.16), (2.17), and (2.18). Therefore,

Y

(r1© = p ©) (Jes] - " (©) (4 = P () = P ™ B)) (|ais| - P (A)
ri(A) + Picmi™ (B) = pi™ (A) = picay i (B)
(|ajj| -p/ @)

(00 ) o - )

P (A4) p ™ (A)

i (C) p¥ (C).

\%

X

\Y

v

Case 3. Fori € N_C NS3 CSs, j€ Ne, specifically, we obtain that

piNC ) = Z |C,~j| =0.

JENc/i}

Hence,

(1 (€)= p™ ©) (|cis] = PN (©) = (1 (C) = p (©)(Jaj;| - p,™ (4))
> 0

P (C) pi¥ (C).

Therefore, we get that ; (C) = p;* (C) > 0 and (r; (C) = p¥ (O)) (|c5| = p,* (©)) > pi* (C) p; (C)
forany i € N¢, j € Ne.

Corollary 2.1. Let A = [ai j] and B = [b,- j] be square matrices of order ny and n, partitioned as in (1.1),
respectively. And let 2 < k < min{n;,n,}, S1, S2, and S3 be as in (1.2). We assume A is a GS DD,
matrix and B is an S DD matrix with r; (B) > 0 for all i € N_B. If all diagonal entries of Ay, and By are
positive (or all negative), i € Ny for any i € S, and

A <min{rj(A), T +k (B) }’ (€S

|aj; + Byt jom ] Byt jom k]

A > 1 (A) + pin ™ (B),
where A; is the same as A; of Theorem 2.3 and i € S ,, then the k-subdirect sum C = A®B is a GS DD, matrix.
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Proof. For the inequality

A; i A)

|au' + bi—n1+k,i—n1+k| |aii

multiplying both sides of this inequality by |a,-.,-| (i€ S1US,, j+#i)and summing for every j € N\ {i)
(j €S,), we have

Z A |(lij| < Z ri4) |aij| .

_ ai+bi i _ a;i
JENA\(i}jeS @5+ Bk om JENA\(i}.jeS a4
Similarly, for i € S,, we obtain that

Z - | |bi—n1+k,j| < Z ﬂ |bi‘"1+k’j| ’

_ Qjom—kjom—k + b _ ||
jeNB\{i—n1+k}| Jrm—ko jrm—k T jeNg\li—ny+k) 1707
(k) el

By Theorem 2.3, we obtain that the k-subdirect sum C = A®; B is a GS DD matrix.

Theorem 2.4. Let A = [a,- j] and B = [bi j] be square matrices of order ny and n, partitioned as in (1.1),
respectively. And let 2 < k < min{n;,n,}, S, S, and Sz be as in (1.2). We assume A is a GS DD,
matrix and B is an S DD matrix with r; (B) > 0 for all i € Ng. If all diagonal entries of A, and By, are
positive (or all negative), i € Ny for any i € S,, |a;| + |bi—n1+k,i—n1+k| < A; and

N .
|bj—n1+k,j—n1+k| - Z |aj,j/+n1—k + bj—n1+k,jr| Z P jni+k 5(B), (J€S2)

min (r,(B) - p/"*(B)) = max(r,(A) — p,"*(A),

k+1<i<ny meN,

min p,"(4) > max > |by
meN, k+1<I<n, el

where A; is the same as A; of Theorem 2.3, then the k-subdirect sum C = A®;B is a GS DD, matrix.

Proof. Since A is a GS DD, matrix with i € N, for any i € §, and |a;;| + |bi_,,1+k,,-_n,+k < A;, we have
la;i| < r;(A) and |c;| = |a;| + |b,~_nl+k,,~_nl+k| < A; = r; (C), that is, for any i € §,, we have i € N¢.
Moreover, we know thati € Ne NS = Ny N S| € S, which means that No = N,. Combining
Lemmas 2.2 and 2.3, we get that r; (C) # O fori € NeNS,US53=NsNS; US;. Therefore, for any
i€ N_c, we obtain that

(C _
ri (C) = Z |Cij| > Z M|Cij| = p"(0).

JEN\{i) JeNC\i} |ij|

Since i €N N_cﬂS » = 0, we prove it from the following two aspects, which are i € N_CﬂS L, =NsNS; CS,
andi € NcNS3 C S;. Foranyj S Nc,thatis,je NcNS T =NNS Sy andj € NcNS, = NysNS, C S,
Therefore, we prove it from the following cases.
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Case 1. Forie NeNnS; =N,NS,CS,jeENcNS; =N, NS, CS, we get

ri(C)=r(A), (2.19)
i (©) > DO 1)+ >, L9 (2.20)
JENC\(i).jeS e JENC\(i).jeS 3 e
= Z r](A) |a,-j|+0
JENAi) a1
= pM (@),
|ij| = |ajj|, (2.21)
p©= Y lel= D layl=p@. (2.22)
JreNEL) JrENA\L)
pre© = > el= D e = pM @, (2.23)
JENE\i) JENAV)
pj% (C) Z 7‘],—(C) |ij, Z 7‘],—(C) |ij, (2.24)
JrENE\Lj)ujreS e JreNC\jhjreS s e
= Y a0
JreNAU) %
= ij(A)-

Therefore, we obtain that

(r:©) = p ©) (less] - P (©)

(ri ) = p™ ) ([a] - 2™ &)
> pM(A) p,f(A)
= pM () pN(0).

Case 2. Fori € NeNS =NyNS, C Sy, j€ NeNS,=NsNS, CS,, we know that r; (C) and (2.19)
are equal, p;¢ (C) and (2.20) are equal, and p;¥c (C) and (2.23) are equal. Moreover,

lejil = lagi + bjomkjoms] = |aji] + |Bonsijomsi]

p;Ne(C) =

2

JreNc\{j}.jres

Electronic Research Archive

|ij1

(2.25)

p

JIENC\{J},jreS 2

(2.26)

|ijf
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+ § |aj,j/+n1—k + bj—n1+k,j/ )

= )

JPENALjrest JjreNB\{j—-n1+k}
jrell .k}
= rj, (C) rj, (C)
. T - |erj/ . T - |Cj/j/
JIENC\{JLJresS J'ENC\{J},jreS 3
rj, (A) rj, (B)
Z |J |ajj/| + Z Jb |bj—n1+k,jr
JreNA} aj’j/ Jjretk+1,...,n2} au
< pM(A) + pjw " (B).
Hence,
1 (C) = p™ (©)) (|ei| - p (©)
= (r; () = pM™ (W)
{lagl + bjmecsmad = Do lainl= DL |agemek + bpmeis
JPENANj},jreS JjreN\{j—n| +k}
jre(l.k)
=(n@=-p" @)l - > ay
JENANGLreS
+ (”i(A) - PiNA (A)) |bj—n1+k,j—n|+k| - Z |aj,j/+n|—k + bj—n1+k,jr
JrEN\Lj=n1+k)
Jre(l k)
> (r:(A) = p @) (Jay] = p™ @) + ™ (A) pjon ™ (B)
> p™ (A) pM (A) + p™M™ (A) pjo ™ (B)
> pNe(C) p;" (C).
Case 3. ForieN_cﬂS3 CcS3,jeNcNS;=NyNS; CS§q, we obtain that
ri(C) = riop+1(B) = ri(B), (2.28)
e ri(C) ri(C)
p© = Y Tl DL e (2.29)
jeNe\li}.jeS |014 jeNe\li}.jeS |ci4
rj(B)
2
JENB\()
jelk+1,..,np}
< pMi(B),
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pre@© =Y eyl DL el =0+ D i = D] bl (2.30)

JENC i) jeS JENC\(i).jeSa jellk) Jellmak)

where [ = i — n; + k. We know that |cjj|, ijC (C), and ij (C) are the same as (2.21), (2.22), and (2.24).
Therefore,

(r© = p ©)(lesi| = p ©) = (rn(B) = p™ B)(lay| - p/" W)
2 (rw(A) = pu™ @) (lay] - p™ 1))
> pu™ (A) p™ (A)
> ) bl e @)
jell,...k}
= p(C)p¥(C).

Case 4. Fori € NeNS;CSs, JENcNS,=NsNS, CS,, we obtain that the values of r; (C), p/vi(C),
and p;¢ (C) are equal to (2.28), (2.30), and (2.29). Moreover, the results of |cjj|, ijC (C), and p;Nc (C)
are the same as (2.25), (2.26), and (2.27). Hence, we arrive at

(:(©) = p (©)) (|ei| - P (©)
> (1 (B) - p/™* (B))

X |ajj| + |bj—n1+k’j—n1+k| - Z |a‘,-‘,-, + E |aj,jf+n1—k + Dtk i
JPENALJrest JjreNB\(j—n1+k}
el k)
_ Nz
= (}"l (B) ol ] B (B)) |ajj| - Z |Cljj/
JTENANGLJrES 1
+ (rl (B) - PINB (B)) |bj—n1+k,j—n1+k| - § |aj,j/+n1—k + bj—n1+k,j/
JreNB\{j—n1+k)
Jrefl,...k)

2 (1w (A) = pu™ D) (Jay] = 2™ (D)) + (i (A) = pu™ (A)) o™ (B)
> P (A) p" (A) + pu™* (A) pjonyi™® (B)
= pu™ (A) (P (A) + P k™ (B))
> > bl (2™ A+ pjn ™ (B))
> p (C)p;¥ (O).
In conclusion, for any i € Ne, J € N¢, we successfully derive that r; (C) — pim (C) > 0 and

(1 (©) = p™ (©) (le] = P (©)) > pie (C) p,™ (C) . Therefore, C = A@yB is a GS DD, matrix.
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Example 2.4. Consider the following matrices:

75 1 2 2 1 25
1 7 03 1 2 02
1.1 1.3 5 I 08 1
04 1 02 65 12 09 [
03 1 02 -09 66 14
07 09 01 12 -1 8

65 -15 -2 1 15
12 66 -23 16 09
B=| -14 2 67 13 12|,
3 3.4 2 66 0.6
04 2.1 1 18 77

wheﬁA is a GS DD matrix with i € N_Afor all iiS 2, and B is an S DD matrix with r; (B) > 0 for all
i € Ng. By computation, we derive Ny = {1,3}, Ny ={2,4,5,6}. Moreover,

Ay 5.5 37 ri(Ad) As 5.2 38 rs(A)
= ~ 0.077 < 0.569 ~ — = , = ~0072<0576 x — = ———,
|Cl44 + l’)]]l 71.5 6.5 |a44| |Cl55 + b22| 72.6 6.6 |6155|
As 54 39 rg(A)
— = —=0.072< 0488 x — = ,
lags + b3s| 75 8 |aes|
we get that > W—/l aij| < D % |aij| is true fori € S{ U S,.
JENR\il jes, 1Tk jeNa\lik.jes»
/14 6 r (B) /15 6 r (B)
—— ~0077<0.092 ~ — = , ~ 0.072 < 0.091 ~ — = ,
|Gss + D11l 65  |bul  lass + byl 66 byl
A6 59 r(B)
—— =0.072 < 0.088 x — = ,
lags + b33 67 |b33]

we have that the second sufficient condition in Theorem 2.3 is true.

Ag =55>4.252=374+0.552 = ry(A) + plm(B), As =5.2>4393 =3.8+0.593 = r5(A) + pzm(B),

Ao =5.4> 4471 =3.9+ 0571 ~ rg(A) + ps"*(B),

we get that the third sufficient condition in Theorem 2.3 is met. Therefore, by Theorem 2.3, C = A®3B is
a GS DD, matrix. In fact,

75 1 2 2 1 25 0 O
1 7 03 1 2 02 0 O
1.1 1.3 5 1 0.8 1 0 O
04 1 02 715 -03 -1.1 1 15
03 1 02 03 726 -09 16 09
0.7 09 01 -02 1 75 13 1.2
0 0 O 3 3.4 2 66 0.6
0O 0 0 04 21 1 1.8 77
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where Nc = {1,3}, N_c =1{2,4,5,6,7,8}. By computation,

1 (C) = 4.5, p,e(C)~ 0235, p,"(C)=13; r(C) =55, psNe(C)~0.983, p,e(C)=0.6;
rs(C) =52, ps’e(C)~ 1.011, pse(C)=0.5; rs(C) =54, pg'c(C)~0.925, pe¥e(C)=0.8;
r7(C) =9, p"(C)~0.66, pNe(C)=0; rs(C) =53, ps'(C)~0499, ps'(C)=0;

lenl =75, p¥e(C) =2, pie(C) ~ 1.048; |exs| =5, pse(C) = 1.1, psNe(C) ~ 1.042.

It is not difficult to find that r(C) — pN¢ (C) > pNe(C) and |cjj| - pN(C) > ij(C) when i € Ng,
j € N¢. So we deduce that r; (C) > pN¢ (C) and (r,- (C) - pe (C)) (|cjj| —pe (C)) > pNe (C) pNe (C)
are true when i € N, Jj € Nc. Thus, C = A®3B is a GS DD, matrix.

Example 2.5. Consider the following matrices:

6 2 05 1 1 08 1.2
01 8 07 03 1 13 038 12 45 3 25 19 192
05 08 7.7 1.1 1.2 03 0.1

25 21 54 1.1 21 269
A=121 15 09 8 18 06 1.7 |, B= 18 24 09 61 25 308 |
03 0.7 14 1 84 25 28 ' ' ’ :

16 25 2 1 17 92 1.1 ?-i 014 (1)3 8-? 9659 ég
08 12 1.6 24 18 1.5 9 4 0407 05 9.

40 2 1 07 15 208

where A is a GS DD matrix and B is an S DD matrix with r; (B) > 0 for all i € Np. By computation,
N, =1{1,4,5,6,7},5, =1{4,5,6,7},

|Cl44| + |b11| =48 <48.1 = Aa, |a55| + |b22| =534<53.6= /15,

laes| + |b33] = 63.2 < 63.5 = Ag, |ag7| + |bag| =70 < 70.2 = A5.
Moreover,

=322 > 10.633 ~ p;"* (B),

bul= D aws + by

JjreNp\{1},jr€(l,...,4)

=32 > 14.101 ~ p," (B),

bol= > asges + by

JreNB\(2}jrell,...4)

= 44.5 > 14.965 ~ p;"* (B),

bl = > ey + by,

jreNp\(3}.j7€ll,....4)
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=50.2 > 15.908 ~ p,"* (B).

|bas| — Z |a7,jr+3 + ba,

jreNp\{4},jr€ll,....4}

min (r(B) - p/"*(B)) rs (B) - pe"” (B) ~ 7.944

k+1<i<ny

3.836 = 1, (A) — 2™ (A) = max(r,(A) — pn(A)),

MmeN4

\%

min p,"(4) = ps" (A)=32>3= 3" |bs|= > || = max > |

meN, k+1<i<np je

Hence, the conditions in Theorem 2.4 are met. By Theorem 2.4, C = A®,B is a GS DD, matrix. In fact,

6 2 05 1 1 08 12 0 0
01 8 0.7 03 1 1.3 08 O 0
05 08 7.7 1.1 12 03 01 O 0
21 1.5 09 48 38 16 24 15 2038
C=103 07 14 22 534 55 53 19 192
16 25 2 35 38 632 22 21 269
08 12 16 42 42 24 70 25 3038

0O 0 0 05 1 1.3 02 65 10

0O 0 0 14 04 07 05 99 68

By computation, Nc = {1,4,5,6,7}, N_c =1{2,3,8,9}. Moreover,

1 (C) =42, p(C)~ 0364, p,"(C)=3.5; r;(C)=4, p;’(C) =042, ps(C)=32;
rs (C) = 13, pge (C) ~ 1.897, pse (C) =3; ro(C) = 12.9, po™ (C) = 1.98, po’c (C) = 3.
lenl =6, pi(C) =4, p™(C) ~ 1.31; leal =48, pi"(C) =9.9, p,(C) ~ 8.201;
less| = 534, ps™(C) = 13.3, ps™(C) ~ 8.537; Ices| = 632, pse(C) = 11.1, ps™(C) ~ 11.655;

lc77l = 70, p,Ne(C) = 11.6, p,™c(C) ~ 12.304.

We see that ri(C) — pe (C) > pNe(C) and |cjj| - pN(C) > ij(C) when i € N¢, j € N¢. Therefore,
we obtain that r; (C) > p*¢ (C) and (ri (C) — piie (C)) (|cjj| —pie (C)) > pNe (C) pNe (C) are true
when i € N, Jj € Nc. Therefore, C = A®4B is a GS DD, matrix.

Remark 2.1. Since the subdirect sum of matrices does not satisfy the commutative law, if we change “A
is a GS DD matrix, and B is an S DD matrix” to “A is an S DD matrix, and B is a GS DD, matrix”,
then we will obtain new sufficient conditions by using similar proofs in this paper.
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3. Conclusions

In this paper, some sufficient conditions are given to show that the subdirect sum of GS DD, matrices
with § DD matrices is in the class of GS DD matrices, and these conditions are only dependent on the
elements of the given matrices. Furthermore, some numerical examples are also presented to illustrate
the corresponding theoretical results.
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