Electronic
Research Archive

Theory article

Subdirect Sums of $G S D D_{1}$ matrices

Jiaqi Qi and Yaqiang Wang*

School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, China

* Correspondence: Email: yaqiangwang1004@163.com.

Abstract

The class of generalized $S D D_{1}\left(G S D D_{1}\right)$ matrices is a new subclass of H-matrices. In this paper, we focus on the subdirect sum of $G S D D_{1}$ matrices, and some sufficient conditions to ensure that the subdirect sum of $G S D D_{1}$ matrices with strictly diagonally dominant ($S D D$) matrices is in the class of $G S D D_{1}$ matrices are given. Moreover, corresponding examples are given to illustrate our results.

Keywords: subdirect sum; H-matrices; $G S D D_{1}$ matrices; strictly diagonally dominant matrices; sufficient conditions

1. Introduction

In 1999, the concept of k-subdirect sums of square matrices was proposed by Fallat and Johnson [1], which is a generalization of the usual sum of matrices [2]. The subdirect sum of matrices plays an important role in many areas, such as matrix completion problems, global stiffness matrices in finite elements and overlapping subdomains in domain decomposition methods [1-5].

An important question for subdirect sums is whether the k-subdirect sum of two square matrices in one class of matrices lies in the same class. This question has attracted widespread attention in different classes of matrices and produced a variety of results. In 2005, Bru et al. gave sufficient conditions ensuring that the subdirect sum of two nonsingular M-matrices was also a nonsingular M-matrix [3]. Then the following year, they further came to the conclusion of the k-subdirect sum of $S-S D D$ matrices is also an $S-S D D$ matrix [2]. In [6], Chen and Wang succeeded in producing some sufficient conditions that the k-subdirect sum of $S D D_{1}$ matrices is an $S D D_{1}$ matrix. In [7], Li et al. gave some sufficient conditions such that the k-subdirect sum of doubly strictly diagonally dominant ($D S D D$) matrices is in the class of $D S D D$ matrices. In addition, the k-subdirect sum of other classes of matrices were mentioned, such as Nekrasov matrices [8-10], quasi-Nekrasov $(Q N)$ matrices [11], $S D D(p)$ matrices [12], weakly chained diagonally dominant matrices [13], Ostrowski-Brauer Sparse (OBS) matrices [14], $\left\{i_{0}\right\}$-Nekrasov matrices [15], $\left\{p_{1}, p_{2}\right\}$-Nekrasov matrices [16], Dashnic-Zusmanovich ($D Z$) matrices [17], and B-matrices [18, 19].
$G S D D_{1}$ matrices as a new subclass of H-matrices was proposed by Dai et al. in 2023 [20]. In this paper, we focus on the subdirect sum of $G S D D_{1}$ matrices, and some sufficient conditions such that the k-subdirect sum of $G S D D_{1}$ matrices with $S D D$ matrices belong to $G S D D_{1}$ matrices are given. Numerical examples are presented to illustrate the corresponding results.

Now, some definitions are listed as follows.
Definition 1.1. ([2]) Let A and B be two square matrices of order n_{1} and n_{2}, respectively, and k be an integer such that $1 \leq k \leq \min \left\{n_{1}, n_{2}\right\}$, and let A and B be partitioned into 2×2 blocks as follows:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \tag{1.1}\\
A_{21} & A_{22}
\end{array}\right), \quad B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right),
$$

where A_{22} and B_{11} are square matrices of order k. Following [1], we call the square matrix of order $n=n_{1}+n_{2}-k$ given by

$$
C=\left(\begin{array}{ccc}
A_{11} & A_{12} & 0 \\
A_{21} & A_{22}+B_{11} & B_{12} \\
0 & B_{21} & B_{22}
\end{array}\right)
$$

the k-subdirect sum of A and B, denoted by $C=A \oplus_{k} B$. We can use the elements in A and B to represent any element in C. Before that, let us define the following set of indices:

$$
\begin{equation*}
S_{1}=\left\{1,2, \ldots, n_{1}-k\right\}, S_{2}=\left\{n_{1}-k+1, n_{1}-k+2, \ldots, n_{1}\right\}, S_{3}=\left\{n_{1}+1, \ldots, n\right\} \tag{1.2}
\end{equation*}
$$

Obviously, $S_{1} \cup S_{2} \cup S_{3}=N:=\{1,2, \ldots, n\}$. Denoting $C=A \oplus_{k} B=\left[c_{i j}\right], A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$, then

$$
c_{i j}=\left\{\begin{array}{l}
a_{i j}, \quad i \in S_{1}, \quad j \in S_{1} \cup S_{2}, \\
0, \quad i \in S_{1}, \quad j \in S_{3}, \\
a_{i j}, \quad i \in S_{2}, \quad j \in S_{1}, \\
a_{i j}+b_{i-n_{1}+k, j-n_{1}+k}, \quad i \in S_{2}, \quad j \in S_{2}, \\
b_{i-n_{1}+k, j-n_{1}+k}, \quad i \in S_{2}, \quad j \in S_{3}, \\
0, \quad i \in S_{3}, \quad j \in S_{1}, \\
b_{i-n_{1}+k, j-n_{1}+k}, \quad i \in S_{3}, \quad j \in S_{2} \cup S_{3} .
\end{array}\right.
$$

Definition 1.2. ([20]) Given a matrix $A=\left[a_{i j}\right] \in C^{n \times n}$, where $C^{n \times n}$ is the set of complex matrices. Let

$$
\begin{aligned}
r_{i}(A) & =\sum_{j \in N, j \neq i}\left|a_{i j}\right|, \quad i \in N . \\
N_{A} & =\left\{i| | a_{i i} \mid \leq r_{i}(A)\right\}, \\
\overline{N_{A}} & =\left\{i| | a_{i i} \mid>r_{i}(A)\right\} .
\end{aligned}
$$

It is easy to obtain that $\overline{N_{A}}$ is the complement of N_{A} in N, i.e., $\overline{N_{A}}=N \backslash N_{A}$.

Definition 1.3. ([6]) A matrix $A=\left[a_{i j}\right] \in C^{n \times n}$ is called a strictly diagonally dominant (SDD) matrix if

$$
\left|a_{i i}\right|>r_{i}(A), \quad i \in N
$$

Definition 1.4. ([20]) A matrix $A=\left[a_{i j}\right] \in C^{n \times n}$ is called a $G S D D_{1}$ matrix if

$$
\left\{\begin{array}{l}
r_{i}(A)>p_{i}^{\overline{N_{A}}}(A), \quad i \in \overline{\overline{N_{A}}}, \\
\left(r_{i}(A)-p_{i}^{\overline{N_{A}}}(A)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right)>p_{i}^{N_{A}}(A) p_{j}^{\overline{N_{A}}}(A), \quad i \in \overline{N_{A}}, \quad j \in N_{A},
\end{array}\right.
$$

where

$$
p_{i}^{N_{A}}(A):=\sum_{j \in N_{A} \backslash\{i\}}\left|a_{i j}\right|, \quad p_{i}^{\overline{N_{A}}}(A):=\sum_{j \in \overline{N_{A} \backslash\{i\}}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|, i \in N .
$$

Remark 1.1. From Definitions 1.3 and 1.4, it is easy to obtain that if a matrix A is an $S D D$ matrix with $r_{i}(A)>0$, then it is a $G S D D_{1}$ matrix.

2. Main results

First of all, a counterexample is given to show that the subdirect sum of two $G S D D_{1}$ matrices may not necessarily be a $G S D D_{1}$ matrix.

Example 2.1. Consider the following GS DD D_{1} matrices A and B, where

$$
A=\left(\begin{array}{ccc}
4 & 3 & 2 \\
1 & 4 & 3 \\
0 & 1 & 3.5
\end{array}\right), \quad B=\left(\begin{array}{ccc}
2.5 & 2 & 0 \\
1 & 2 & 1 \\
2.3 & 1.8 & 4
\end{array}\right)
$$

and the 1 -subdirect sum $C=A \oplus_{1} B$ is

$$
C=\left(\begin{array}{ccccc}
4 & 3 & 2 & 0 & 0 \\
1 & 4 & 3 & 0 & 0 \\
0 & 1 & 6 & 2 & 0 \\
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 2.3 & 1.8 & 4
\end{array}\right)
$$

However, C is not a $G S D D_{1}$ matrix because

$$
\left(r_{3}(C)-p_{3}^{\overline{N_{C}}}(C)\right)\left(\left|c_{11}\right|-p_{1}^{N_{C}}(C)\right)=(3-0)(4-3)=3=3 \times 1=p_{3}^{N_{C}}(C) p_{1}^{\overline{N_{C}}}(C)
$$

Example 2.1 shows that the subdirect sum of $G S D D_{1}$ matrices is not a $G S D D_{1}$ matrix. Then, a meaningful discussion is concerned with: under what conditions will the subdirect sum of $G S D D_{1}$ matrices is in the class of $G S D D_{1}$ matrices?

In order to obtain the main results, several lemmas are introduced that will be used in the sequel.
Lemma 2.1. If matrix $A=\left[a_{i j}\right] \in C^{n \times n}$ is a GSDD D_{1} matrix, then $\left|a_{j j}\right|-p_{j}^{N_{A}}(A)>0$ holds for all $j \in N_{A}$.

Proof. According to the definition of $G S D D_{1}$ matrices, we get

$$
\left(r_{i}(A)-p_{i}^{\overline{N_{A}}}(A)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right)>p_{i}^{N_{A}}(A) p_{j}^{\overline{N_{A}}}(A) .
$$

Since $r_{i}(A)-p_{i}^{\overline{N_{A}}}(A)>0, p_{i}^{N_{A}}(A)$, and $p_{j}^{\overline{N_{A}}}(A)$ are all nonnegative, $\left|a_{j j}\right|-p_{j}^{N_{A}}(A)>0$ is obtained.
Lemma 2.2. ([20]) If $A=\left[a_{i j}\right] \in C^{n \times n}$ is a GS DD D_{1} matrix, then there is at least one entry $a_{i j} \neq 0$, $i \neq j, i \in \overline{N_{A}}, j \in N$.
Lemma 2.3. ([20]) If $A=\left[a_{i j}\right] \in C^{n \times n}$ is a $G S D D_{1}$ matrix with $N_{A}=\emptyset$, then A is an $S D D$ matrix, and there is at least one entry $a_{i j} \neq 0, i \neq j, i \in \overline{N_{A}}, j \in \overline{N_{A}}$.

Now, we consider the 1 -subdirect sum of $G S D D_{1}$ matrices.
Theorem 2.1. Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be square matrices of order n_{1} and n_{2} partitioned as in (1.1), respectively. And let $k=1, S_{1}=\left\{1,2, \ldots, n_{1}-1\right\}, S_{2}=\left\{n_{1}\right\}$, and $S_{3}=\left\{n_{1}+1, n_{1}+2, \ldots, n_{1}+n_{2}-1\right\}$. We assume that A is a $G S D D_{1}$ matrix, and B is an $S D D$ matrix with $r_{i}(B)>0$ for all $i \in \overline{N_{B}}$. If all diagonal entries of A_{22} and B_{11} are positive (or all negative), $n_{1} \in \overline{N_{A}}$ and

$$
\frac{r_{n_{1}}(A)}{\left|a_{n_{1}, n_{1}}\right|} \geq \frac{r_{n_{1}}(A)+r_{1}(B)}{\left|a_{n_{1}, n_{1}}+b_{11}\right|}
$$

then the 1 -subdirect sum $C=A \oplus_{1} B$ is a $G S D D_{1}$ matrix.
Proof. According to the 1 -subdirect sum $C=A \oplus_{1} B$, we have

$$
r_{n_{1}}(C)=r_{n_{1}}(A)+r_{1}(B) .
$$

From $n_{1} \in \overline{N_{A}}$, we know $\left|a_{n_{1}, n_{1}}\right|>r_{n_{1}}(A)$. Because all diagonal entries of A_{22} and B_{11} are positive (or negative), we have

$$
\left|c_{n_{1}, n_{1}}\right|=\left|a_{n_{1}, n_{1}}+b_{11}\right|=\left|a_{n_{1}, n_{1}}\right|+\left|b_{11}\right|>r_{n_{1}}(A)+r_{1}(B)=r_{n_{1}}(C) .
$$

Since A is a $G S D D_{1}$ matrix, B is an $S D D$ matrix with $r_{i}(B)>0$ for all $i \in \overline{N_{B}}, C=A \oplus_{1} B$, and according to Lemmas 2.2 and 2.3, we know that $r_{i}(C) \neq 0$ for all $i \in \overline{N_{C}}$. Therefore, for any $i \in \overline{N_{C}}$,

$$
r_{i}(C)=\sum_{j \in N \backslash\{i\}}\left|c_{i j}\right|>\sum_{j \in \overline{\overline{N_{C}} \backslash\{i\}}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right|=p_{i}^{\overline{N_{C}}}(C) .
$$

For any $j \in N_{C}$, we easily get $j \in N_{C} \cap S_{1}=N_{A} \cap S_{1} \subset S_{1}$. For the three different selection ranges of i, that is, $i \in \overline{N_{C}} \cap S_{1}=\overline{N_{A}} \cap S_{1} \subset S_{1}, i \in \overline{N_{C}} \cap S_{2}=\left\{n_{1}\right\}$, and $i \in \overline{N_{C}} \cap S_{3} \subset S_{3}$, therefore, we divide the proof into three cases.

Case 1. For $i \in \overline{N_{C}} \cap S_{1}=\overline{N_{A}} \cap S_{1} \subset S_{1}, j \in N_{C}$, we have

$$
r_{i}(C)=r_{i}(A),
$$

$$
\begin{align*}
& p_{i}^{\overline{N_{C}}}(C)=\sum_{j \in \overline{N_{C}} \backslash i i, j \in S_{1}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right|+\sum_{j \in \overline{N_{C}} \backslash\left\{i, j, j \in S_{2}\right.} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right|+\sum_{\left.j \in \overline{N_{C}} \backslash \backslash i\right\rangle, j \in S_{3}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right| \\
& =\sum_{j \in \overline{N_{A} \backslash i i, j \in S_{1}}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|+\frac{r_{n_{1}}(A)+r_{1}(B)}{\left|a_{n_{1}, n_{1}}+b_{11}\right|}\left|a_{i, n_{1}}\right|+0 \\
& \leq \sum_{j \in \bar{N}_{A} \backslash i i, j \in S_{1}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|+\frac{r_{n_{1}}(A)}{\left|a_{n_{1}, n_{1} \mid}\right|}\left|a_{i, n_{1}}\right| \\
& =p_{i}^{\overline{N_{A}}}(A) \text {, } \\
& \left|c_{j j}\right|=\left|a_{j j}\right|, \tag{2.1}\\
& p_{j}^{N_{C}}(C)=\sum_{j, \in N_{C} \backslash\{j\}}\left|c_{j j}\right|=\sum_{j, \in N_{A} \backslash\{j\}}\left|a_{j j}\right|=p_{j}^{N_{A}}(A), \tag{2.2}\\
& p_{i}^{N_{C}}(C)=\sum_{j \in N_{C} \backslash\{i\}}\left|c_{i j}\right|=\sum_{j \in N_{A} \backslash\{i\}}\left|a_{i j}\right|=p_{i}^{N_{A}}(A),
\end{align*}
$$

$$
\begin{aligned}
& =\sum_{j, \in \bar{N}_{A} \backslash\left\{j, j, j \in S_{1}\right.} \frac{r_{j \prime}(A)}{\left|a_{j j_{j} j}\right|}\left|a_{j j_{j}}\right|+\frac{r_{n_{1}}(A)+r_{1}(B)}{\left|a_{n_{1}, n_{1}}+b_{11}\right|}\left|a_{j, n_{1}}\right|+0 \\
& \leq \sum_{j \epsilon \in \overline{N_{A}} \backslash j j, j \in S_{1}} \frac{r_{j j}(A)}{\left|a_{j, j}\right|}\left|a_{j j^{\prime}}\right|+\frac{r_{n_{1}}(A)}{\left|a_{n_{1}, n_{1} \mid}\right|}\left|a_{j, n_{1}}\right| \\
& =p_{j}^{\overline{N_{A}}}(A) \text {. }
\end{aligned}
$$

Therefore, we obtain that

$$
\begin{aligned}
\left(r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)\right)\left(\left|c_{j j}\right|-p_{j}^{N_{C}}(C)\right) & \geq\left(r_{i}(A)-p_{i}^{\overline{N_{A}}}(A)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right) \\
& >p_{i}^{N_{A}}(A) p_{j}^{\overline{N_{A}}}(A) \\
& \geq p_{i}^{N_{C}}(C) p_{j}^{\overline{N_{C}}}(C) .
\end{aligned}
$$

Case 2. For $i \in \overline{N_{C}} \cap S_{2}=\left\{n_{1}\right\}, j \in N_{C}$,

$$
\begin{gathered}
r_{n_{1}}(C)=r_{n_{1}}(A)+r_{1}(B), \\
p_{n_{1}}^{N_{C}}(C)=\sum_{j \in N_{C} \backslash\left\{n_{1}\right\}}\left|c_{n_{1}, j}\right|=\sum_{j \in N_{A} \backslash\left\{n_{1}\right\}}\left|a_{n_{1}, j}\right|=p_{n_{1}}^{N_{A}}(A) .
\end{gathered}
$$

$$
\begin{aligned}
p_{n_{1}}^{\overline{N_{C}}}(C) & =\sum_{j \in \overline{N_{C} \backslash\left\{n_{1}\right\}, j \in S_{1}}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{n_{1}, j}\right|+\sum_{\left.j \in \overline{N_{C}} \backslash n_{1}\right\}, j \in S_{3}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{n_{1}, j}\right| \\
& =\sum_{\left.j \in \overline{N_{A}} \backslash \backslash n_{1}\right\}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{n_{1}, j}\right|+\sum_{j \in \overline{\bar{N}_{B} \backslash(1\}}} \frac{r_{j}(B)}{\left|b_{j j}\right|}\left|b_{1 j}\right| \\
& =p_{n_{1}} \overline{N_{A}}
\end{aligned}(A)+p_{1} \overline{\overline{N_{B}}}(B) . \quad .
$$

We know that the results of the $\left|c_{j j}\right|, p_{j}^{N_{C}}(C)$, and $p_{j}^{\overline{N_{C}}}(C)$ are the same as (2.1), (2.2), and (2.3). Because B is an $S D D$ matrix with $r_{i}(B)>0$ for all $i \in \overline{N_{B}}$, we clearly get

$$
r_{1}(B)-p_{1} \overline{N_{B}}(B)>0
$$

Hence,

$$
\begin{aligned}
&\left(r_{n_{1}}(C)-p_{n_{1}} \overline{N_{C}}\right. \\
&(C))\left(\left|c_{j j}\right|-p_{j}{ }^{N_{C}}(C)\right)=\left(r_{n_{1}}(A)+r_{1}(B)-p_{n_{1}}^{\overline{N_{A}}}(A)-p_{1} \overline{\bar{N}_{B}}(B)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right) \\
&>\left(r_{n_{1}}(A)-p_{n_{1}}^{\overline{N_{A}}}(A)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right) \\
&>p_{n_{1}}^{N_{A}}(A) p_{j}^{\overline{N_{A}}}(A) \\
& \geq p_{n_{1}}^{N_{C}}(C) p_{j}^{\overline{N_{C}}}(C) .
\end{aligned}
$$

Case 3. For $i \in \overline{N_{C}} \cap S_{3} \subset S_{3}, j \in N_{C}$, in particular, we obtain that

$$
p_{i}^{N_{C}}(C)=\sum_{j \in N_{C} \backslash\{i\}}\left|c_{i j}\right|=0
$$

So we easily come up with

$$
\begin{aligned}
\left(r_{n_{1}}(C)-p_{n_{1}} \overline{\bar{N}_{C}}(C)\right)\left(\left|c_{j j}\right|-p_{j}{ }^{N_{C}}(C)\right) & =\left(r_{n_{1}}(C)-p_{n_{1}}^{\overline{N_{C}}}(C)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right) \\
& >0 \\
& =p_{i}^{N_{C}}(C) p_{j}^{\overline{N_{C}}}(C) .
\end{aligned}
$$

From Cases 1-3, we have that for any $i \in \overline{N_{C}}$ and $j \in N_{C}$, the C matrix satisfies the definition of the $G S D D_{1}$ matrix. The conclusion is as follows.
Theorem 2.2. Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be square matrices of order n_{1} and n_{2} partitioned as in (1.1), respectively. And let k, S_{1}, S_{2}, and S_{3} be as in Theorem 2.1. Likewise, we assume A is a GSDD D_{1} matrix, and B is an $S D D$ matrix with $r_{i}(B)>0$ for all $i \in \overline{N_{B}}$. If all diagonal entries of A_{22} and B_{11} are positive (or all negative), $n_{1} \in N_{A}, r_{n_{1}}(A)+r_{1}(B) \geq\left|a_{n_{1}, n_{1}}\right|+\left|b_{11}\right|$ and

$$
\begin{gathered}
\min _{2 \leq l \leq n_{2}}\left(r_{l}(B)-p_{l}^{\overline{N_{B}}}(B)\right) \geq \max _{m \in \overline{N_{A}}}\left(r_{m}(A)-p_{m}^{\overline{N_{A}}}(A)\right), \\
\min _{m \in \overline{N_{A}}} p_{m}^{N_{A}}(A) \geq \max _{2 \leq I \leq n_{2}}\left|b_{l l}\right|,
\end{gathered}
$$

then $C=A \oplus_{1} B$ is a $G S D D_{1}$ matrix.

Proof. Since A is a $G S D D_{1}$ matrix, B is an $S D D$ matrix with $r_{i}(B)>0$ for all $i \in \overline{N_{B}}, n_{1} \in N_{A}$, and $r_{n_{1}}(A)+r_{1}(B) \geq\left|a_{n_{1}, n_{1}}\right|+\left|b_{11}\right|$, we get $n_{1} \in N_{C}$ and then $N_{C}=N_{A}$.

For any $i \in \overline{N_{C}}$, by Lemmas 2.2 and 2.3, we have $r_{i}(C) \neq 0$ and then

$$
r_{i}(C)=\sum_{j \in N \backslash\{i\}}\left|c_{i j}\right|>\sum_{j \in \overline{\left.\overline{N_{C}} \backslash i i\right\}}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right|=p_{i}^{\overline{N_{C}}}(C) .
$$

Since $n_{1} \in N_{C}$, i.e., $i \in \overline{N_{C}} \cap S_{2}=\emptyset$, we prove it according to the two different selection ranges of i, namely $i \in \overline{N_{C}} \cap S_{1}=\overline{N_{A}} \cap S_{1} \subset S_{1}$ and $i \in \overline{N_{C}} \cap S_{3} \subset S_{3}$. For any $j \in N_{C}$, that is, $j \in N_{C} \cap S_{1}=N_{A} \cap S_{1} \subset S_{1}$ and $j \in N_{C} \cap S_{2}=N_{A} \cap S_{2}=\left\{n_{1}\right\}$. Therefore, we prove it from the following cases.

Case 1. For $i \in \overline{N_{C}} \cap S_{1}=\overline{N_{A}} \cap S_{1} \subset S_{1}, j \in N_{C} \cap S_{1}=N_{A} \cap S_{1} \subset S_{1}$, we obtain that

$$
\begin{align*}
& r_{i}(C)=r_{i}(A), \tag{2.4}\\
& p_{i}^{\overline{N_{C}}}(C)=\sum_{j \in \overline{N_{C} \backslash\left\{i, j, j S_{1}\right.}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right|+\sum_{j \in \overline{N_{C} \backslash \backslash i, j, j \in S_{3}}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right| \tag{2.5}\\
& =\sum_{j \in \overline{N_{A} \backslash\{i\}}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|+0 \\
& =p_{i}^{\overline{N_{A}}}(A) \text {, } \\
& \left|c_{j j}\right|=\left|a_{j j}\right|, \tag{2.6}\\
& p_{j}^{N_{C}}(C)=\sum_{j, \in N_{C} \backslash\{j\}}\left|c_{j j j}\right|=\sum_{j ر \in N_{A} \backslash\{j\}}\left|a_{j j}\right|=p_{j}^{N_{A}}(A), \tag{2.7}\\
& p_{i}^{N_{C}}(C)=\sum_{j \in N_{C} \backslash\{i\}}\left|c_{i j}\right|=\sum_{j \in N_{A} \backslash\{i\}}\left|a_{i j}\right|=p_{i}^{N_{A}}(A), \tag{2.8}\\
& p_{j}^{\overline{N_{C}}}(C)=\sum_{j^{\prime} \in \overline{N_{C}} \backslash\left\{j, j, j \epsilon S_{1}\right.} \frac{r_{j j}(C)}{\left|c_{j, j}\right|}\left|c_{j j^{\prime}}\right|+\sum_{j \neq \frac{\bar{N}_{C} \backslash \backslash j, j, j \in S_{3}}{}} \frac{r_{j,}(C)}{\left|c_{j^{\prime} j^{\prime}}\right|}\left|c_{j_{j j}}\right| \tag{2.9}\\
& =\sum_{j, \in \overline{N_{A}} \backslash\{j\}} \frac{r_{j}(A)}{\left|a_{j j^{\prime} j}\right|}\left|a_{j j^{\prime}}\right|+0 \\
& =p_{j}^{\overline{N_{A}}}(A) \text {. }
\end{align*}
$$

Therefore,

$$
\begin{aligned}
\left(r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)\right)\left(\left|c_{j j}\right|-p_{j}{ }_{j}^{N_{C}}(C)\right) & =\left(r_{i}(A)-p_{i}^{\overline{N_{A}}}(A)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right) \\
& >p_{i}^{N_{A}}(A) p_{j}^{\overline{N_{A}}}(A) \\
& =p_{i}^{N_{C}}(C) p_{j}^{\overline{N_{C}}}(C) .
\end{aligned}
$$

Case 2. For $i \in \overline{N_{C}} \cap S_{1}=\overline{N_{A}} \cap S_{1} \subset S_{1}, j \in N_{C} \cap S_{2}=N_{A} \cap S_{2}=\left\{n_{1}\right\}$, we know that $r_{i}(C)$, $p_{i}^{N_{C}}(C)$, and $p_{i}^{\overline{N_{C}}}(C)$ have the same results as (2.4), (2.8), and (2.5). Moreover,

$$
\begin{align*}
& \left|c_{n_{1}, n_{1}}\right|=\left|a_{n_{1}, n_{1}}+b_{11}\right|=\left|a_{n_{1}, n_{1}}\right|+\left|b_{11}\right|, \tag{2.10}\\
& p_{n_{1}}^{N_{C}}(C)=\sum_{j \ell \in N_{C} \backslash\left\{n_{1}\right\}}\left|c_{n_{1}, j}\right|=\sum_{j \ell \in N_{A} \backslash\left\{n_{1}\right\}}\left|a_{n_{1}, j}\right|=p_{n_{1}} N_{A}(A), \tag{2.11}\\
& p_{n_{1}}^{\overline{N_{C}}}(C)=\sum_{j, \overline{\left.N_{C} \backslash \backslash n_{1}\right\}, j, j^{\prime} \in S_{1}}} \frac{r_{j \prime}(C)}{\left|c_{j^{\prime} j j^{\prime} \mid}\right|}\left|c_{n_{1}, j^{\prime} \mid}\right|+\sum_{j^{\prime} \in \overline{N_{C}} \backslash\left\{n_{1}, j, j \in S_{3}\right.} \frac{r_{j,}(C)}{\left|c_{j^{\prime}, j}\right|}\left|c_{n_{1}, j^{\prime}}\right| \tag{2.12}\\
& =\sum_{j, \overline{N_{A}} \backslash\left\{n_{1}\right\}} \frac{r_{j,}(A)}{\left|a_{j^{\prime}, j}\right|}\left|a_{n_{1}, j^{\prime}}\right|+\sum_{j \in \in \overline{N_{B} \backslash\{1\}}} \frac{r_{j \prime}(B)}{\left|b_{j^{\prime} j_{j}}\right|}\left|b_{1 j^{\prime}}\right| \\
& =p_{n_{1}}^{\overline{N_{A}}}(A)+p_{1}^{\overline{N_{B}}}(B) \text {. }
\end{align*}
$$

Hence, we obtain that

$$
\begin{aligned}
\left(r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)\right)\left(\left|c_{n_{1}, n_{1}}\right|-p_{n_{1}}^{N_{C}}(C)\right) & =\left(r_{i}(A)-p_{i}^{\overline{N_{A}}}(A)\right)\left(\left|a_{n_{1}, n_{1}}\right|+\left|b_{11}\right|-p_{n_{1}}^{N_{A}}(A)\right) \\
& =\left(r_{i}(A)-p_{i}^{\overline{N_{A}}}(A)\right)\left(\left|a_{n_{1}, n_{1}}\right|-p_{n_{1}}^{N_{A}}(A)\right) \\
& +\left(r_{i}(A)-p_{i}^{\overline{N_{A}}}(A)\right) \cdot\left|b_{11}\right| \\
& >p_{i}^{N_{A}}(A) p_{n_{1}}^{\overline{N_{A}}}(A)+p_{i}^{N_{A}}(A) p_{1}^{\overline{N_{B}}}(B) \\
& =p_{i}^{N_{C}}(C) p_{n_{1}} \overline{N_{C}}(C) .
\end{aligned}
$$

Case 3. For $i \in \overline{N_{C}} \cap S_{3} \subset S_{3}, j \in N_{C} \cap S_{1}=N_{A} \cap S_{1} \subset S_{1}$, we have

$$
\begin{align*}
& r_{i}(C)=r_{i-n_{1}+1}(B)=r_{l}(B), \tag{2.13}\\
p_{i}^{\overline{N_{C}}}(C)= & \sum_{j \in \overline{N_{C} \backslash\left\{i, j, j \in S_{1}\right.}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right|+\sum_{j \overline{\left.N_{C} \backslash \backslash i\right\}, j \in S_{3}}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right| \tag{2.14}\\
= & 0+\sum_{j \in \overline{N_{B}} \backslash\left\{l, j \in\left\{2, \ldots, n_{2}\right\}\right.} \frac{r_{j}(B)}{\left|b_{j j}\right|}\left|b_{l j}\right| \\
\leq & p_{l} \overline{N_{B}}(B),
\end{align*}
$$

$$
\begin{equation*}
p_{i}^{N_{C}}(C)=\sum_{j \in N_{C} \backslash\{i\}, j \in S_{1}}\left|c_{i j}\right|+\sum_{j \in N_{C} \backslash\left\{i,, j=n_{1}\right.}\left|c_{i, n_{1}}\right|=0+\left|b_{l 1}\right|=\left|b_{l 1}\right|, \tag{2.15}
\end{equation*}
$$

where $l=i-n_{1}+1$. We have the same values of $\left|c_{j j}\right|, p_{j}^{N_{C}}(C)$, and $p_{j}^{\overline{N_{C}}}(C)$ as (2.6), (2.7), and (2.9). Therefore,

$$
\begin{aligned}
\left(r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)\right)\left(\left|c_{j j}\right|-p_{j}^{N_{C}}(C)\right) & \geq\left(r_{l}(B)-p_{l}^{\overline{N_{B}}}(B)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right) \\
& \geq\left(r_{m}(A)-p_{m}^{\overline{N_{A}}}(A)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right) \\
& >p_{m}^{N_{A}}(A) p_{j}^{\overline{N_{A}}}(A) \\
& \geq\left|b_{l 1}\right| \cdot p_{j}^{\overline{N_{A}}}(A) \\
& =p_{i}^{N_{C}}(C) p_{j}^{\overline{N_{C}}}(C) .
\end{aligned}
$$

Case 4. For $i \in \overline{N_{C}} \cap S_{3} \subset S_{3}, j \in N_{C} \cap S_{2}=N_{A} \cap S_{2}=\left\{n_{1}\right\}$, we get that the values of $r_{i}(C)$, $p_{i}^{N_{C}}(C)$, and $p_{i}^{\overline{N_{C}}}(C)$ are the same as (2.13), (2.15), and (2.14). Moreover, the results of $\left|c_{j j}\right|, p_{j}^{N_{C}}(C)$, and $p_{j}^{\overline{N_{C}}}(C)$ are the same as (2.10), (2.11), and (2.12). Hence, we obtain that

$$
\begin{aligned}
\left(r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)\right)\left(\left|c_{n_{1}, n_{1}}\right|-p_{n_{1}}{ }^{N_{C}}(C)\right) & \geq\left(r_{l}(B)-p_{l}^{\overline{N_{B}}}(B)\right)\left(\left|a_{n_{1}, n_{1}}\right|+\left|b_{11}\right|-p_{n_{1}}{ }^{N_{A}}(A)\right) \\
& =\left(r_{l}(B)-p_{l}^{\overline{N_{B}}}(B)\right) \cdot\left|b_{11}\right| \\
& +\left(r_{l}(B)-p_{l}^{\overline{N_{B}}}(B)\right)\left(\left|a_{n_{1}, n_{1}}\right|-p_{n_{1}}{ }^{N_{A}}(A)\right) \\
& \geq\left(r_{m}(A)-p_{m}^{\overline{N_{A}}}(A)\right) \cdot\left|b_{11}\right| \\
& +\left(r_{m}(A)-p_{m} \overline{N_{A}}\right. \\
& (A))\left(\left|a_{n_{1}, n_{1}}\right|-p_{n_{1}}^{N_{A}}(A)\right) \\
& >p_{m}^{N_{A}}(A) p_{1}^{\overline{N_{B}}}(B)+p_{m}^{N_{A}}(A) p_{n_{1}}^{\overline{N_{A}}}(A) \\
& \geq\left|b_{l 1}\right| \cdot\left(p_{1}^{\overline{N_{B}}}(B)+p_{n_{1}}^{\overline{N_{A}}}(A)\right) \\
& =p_{i}^{N_{C}}(C) p_{n_{1}}^{\overline{N_{C}}}(C) .
\end{aligned}
$$

From Cases $1-4$, we definitively get that C is a $G S D D_{1}$ matrix.
The following Example 2.2 shows that Theorem 2.1 may not necessarily hold when $k \geq 2$.
Example 2.2. Consider the following matrices:

$$
A=\left(\begin{array}{cccc}
3 & 1 & 1.7 & 1 \\
1 & 4 & 1 & 1 \\
2 & 2 & 4 & 1 \\
0 & 1 & 1 & 3
\end{array}\right), \quad B=\left(\begin{array}{lll}
3 & 1 & 1 \\
0 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)
$$

where A is a $G S D D_{1}$ matrix and B is an $S D D$ matrix with $r_{i}(B)>0$ for all $i \in \overline{N_{B}}$. It is easy to verify that A and B satisfy the conditions of Theorem 2.1 and $A \oplus_{1} B$ is a GSDD D_{1} matrix. However, $C=A \oplus_{2} B$ is not a $G S D D_{1}$ matrix. In fact,

$$
C=\left(\begin{array}{ccccc}
3 & 1 & 1.7 & 1 & 0 \\
1 & 4 & 1 & 1 & 0 \\
2 & 2 & 7 & 2 & 1 \\
0 & 1 & 1 & 5 & 1 \\
0 & 0 & 1 & 0 & 3
\end{array}\right)
$$

By computation,

$$
\overline{N_{C}}=\{2,4,5\}, \quad N_{C}=\{1,3\}
$$

$\left(r_{5}(C)-p_{5} \overline{N_{C}}(C)\right)\left(\left|c_{11}\right|-p_{1}{ }^{N_{C}}(C)\right)=(1-0)(3-1.7)=1.3<1.35=1 \times 1.35=p_{5}^{N_{C}}(C) p_{1}{ }^{\overline{N_{C}}}(C)$.
Therefore, $C=A \oplus_{2} B$ is not a $G S D D_{1}$ matrix.
The following Example 2.3 shows that Theorem 2.2 may not necessarily hold when $k \geq 2$.
Example 2.3. Consider the following matrices:

$$
A=\left(\begin{array}{llll}
5 & 2 & 2 & 1 \\
0 & 4 & 0 & 1 \\
0 & 0 & 3 & 2 \\
1 & 1 & 1 & 2
\end{array}\right), \quad B=\left(\begin{array}{ccc}
3 & -2 & 0 \\
1 & 15 & 4.3 \\
0.9 & -5.1 & 17
\end{array}\right)
$$

where A is a GSDD matrix and B is an $S D D$ matrix with $r_{i}(B)>0$ for all $i \in \overline{N_{B}}$. It is easy to verify that A and B satisfy the conditions of Theorem 2.2 and $A \oplus_{1} B$ is a $G S D D_{1}$ matrix. However, $C=A \oplus_{2} B$ is not a $G S D D_{1}$. In fact,

$$
C=\left(\begin{array}{ccccc}
5 & 2 & 2 & 1 & 0 \\
0 & 4 & 0 & 1 & 0 \\
0 & 0 & 6 & 0 & 0 \\
1 & 1 & 2 & 17 & 4.3 \\
0 & 0 & 0.9 & -5.1 & 17
\end{array}\right) .
$$

By computation, $r_{3}(C)-p_{3}{ }^{\overline{C_{C}}}(C)=0$, therefore, $C=A \oplus_{2} B$ is not a $G S D D_{1}$ matrix.
Those are sufficient conditions to ensure that the 1-subdirect sum of $G S D D_{1}$ matrices with $S D D$ matrices is a $G S D D_{1}$ matrix. In fact, as the value of k increases, the situation becomes more complicated, so that the adequate conditions we give will also be more complicated.

Next, some sufficient conditions ensuring that the k-subdirect ($k \geq 2$) sum of $G S D D_{1}$ matrices with $S D D$ matrices is a $G S D D_{1}$ matrix are given.
Theorem 2.3. Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be square matrices of order n_{1} and n_{2} partitioned as in (1.1), respectively. And let $2 \leq k \leq \min \left\{n_{1}, n_{2}\right\}, S_{1}, S_{2}$, and S_{3} be as in (1.2). We assume A is a $G S D D_{1}$ matrix and B is an $S D D$ matrix with $r_{i}(B)>0$ for all $i \in \overline{N_{B}}$. If all diagonal entries of A_{22} and B_{11} are positive (or all negative), $i \in \overline{N_{A}}$ for any $i \in S_{2}$ and

$$
\begin{aligned}
& \sum_{\substack{j \in \overline{N_{A}} \backslash\{i\}, j \in S_{2}}} \frac{\lambda_{j}}{\left|a_{j j}+b_{j-n_{1}+k, j-n_{1}+k}\right|}\left|a_{i j}\right| \leq \sum_{j \in \overline{\left.N_{A} \backslash \backslash i\right\}, j \in S_{2}}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|, \quad\left(i \in S_{1} \cup S_{2}\right) \\
& \sum_{\substack{j \in \overline{N_{B} \backslash\left\{i-n_{1}+k\right\}} \\
j \in\{1, \ldots, k\}}} \frac{\lambda_{j+n_{1}-k}}{\left|a_{j+n_{1}-k, j+n_{1}-k}+b_{j j}\right|}\left|b_{i-n_{1}+k, j \mid}\right| \leq \sum_{\substack{j \in \overline{N_{B} \backslash\left\{i-n_{1}+k\right\}} \\
j \in\{1, \ldots, k\}}} \frac{r_{j}(B)}{\left|b_{j j}\right|}\left|b_{i-n_{1}+k, j}\right|, \quad\left(i \in S_{2}\right)
\end{aligned}
$$

$$
\lambda_{i} \geq r_{i}(A)+p_{i-n_{1}+k} \overline{N_{B}}(B), \quad\left(i \in S_{2}\right)
$$

where $\lambda_{i}=r_{i}(A)+r_{i-n_{1}+k}(B)+\sum_{\substack{j=n_{1}-k+1 \\ j \neq i}}^{n_{1}}\left|a_{i j}+b_{i-n_{1}+k, j-n_{1}+k}\right|-\sum_{\substack{j=n_{1}-k+1 \\ j \neq i}}^{n_{1}}\left(\left|a_{i j}\right|+\left|b_{i-n_{1}+k, j-n_{1}+k}\right|\right)$, then the k-subdirect sum $C=A \oplus_{k} B$ is a GS DD D_{1} matrix.

Proof. Since A is a $G S D D_{1}$ matrix with $i \in \overline{N_{A}}$ for any $i \in S_{2}$, we get $\left|a_{i i}\right|>r_{i}(A)$. According to the k-subdirect sum $C=A \oplus_{k} B$, we have $r_{i}(C)=\lambda_{i} \leq r_{i}(A)+r_{i-n_{1}+k}(B)$. Because all diagonal entries of A_{22} and B_{11} are positive (or negative), we get $\left|c_{i i}\right|=\left|a_{i i}\right|+\left|b_{i-n_{1}+k, i-n_{1}+k}\right|$. Therefore, we obtain that $\left|c_{i i}\right|>r_{i}(C)$, that is, for any $i \in S_{2}, i \in \overline{N_{C}}$. Since A is a $G S D D_{1}$ matrix, B is an $S D D$ matrix with $r_{i}(B)>0$ for all $i \in \overline{N_{B}}$, and $C=A \oplus_{k} B$, by Lemmas 2.2 and 2.3 we know that $r_{i}(C) \neq 0$ for $i \in \overline{N_{C}} \cap S_{1} \cup S_{3}=\overline{N_{A}} \cap S_{1} \cup S_{3}$. For $i \in S_{2}$, by sufficient conditions, we have $\lambda_{i} \geq r_{i}(A)+p_{i-n_{1}+k}{ }^{\overline{N_{B}}}(B)$, which means that $\lambda_{i}>0$. Therefore, for any $i \in \overline{N_{C}}$, we obtain that

$$
r_{i}(C)=\sum_{j \in N \backslash\{i\}}\left|c_{i j}\right|>\sum_{j \in \overline{\left.\overline{N_{C}} \backslash i i\right\}}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right|=p_{i}^{\overline{N_{C}}}(C) .
$$

Moreover, for any $j \in N_{C}$, we get $j \in N_{C} \cap S_{1}=N_{A} \cap S_{1} \subset S_{1}$. For any $i \in \overline{N_{C}}$, similarly, we prove it from the following three cases, which are $i \in \overline{N_{C}} \cap S_{1}=\overline{N_{A}} \cap S_{1} \subset S_{1}, i \in \overline{N_{C}} \cap S_{2}=\overline{N_{A}} \cap S_{2} \subset S_{2}$, and $i \in \overline{N_{C}} \cap S_{3} \subset S_{3}$.

Case 1. For $i \in \overline{N_{C}} \cap S_{1}=\overline{N_{A}} \cap S_{1} \subset S_{1}, j \in N_{C}$, we have

$$
\begin{align*}
& r_{i}(C)=r_{i}(A), \\
& p_{i}^{\overline{N_{C}}}(C)=\sum_{j \in \overline{N_{C}} \backslash\{i\}, j \in S_{1}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right|+\sum_{j \in \overline{N_{C}} \backslash \backslash i, j, j \in S_{2}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right|+\sum_{j \in \bar{N}_{C} \backslash\left\{i i, j \in S_{3}\right.} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right| \\
& =\sum_{j \in \bar{N}_{A} \backslash\{i\}, j \in S_{1}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|+\sum_{j \in \overline{N_{A}} \backslash i,, j \in S_{2}} \frac{\lambda_{j}}{\left|a_{j j}+b_{j-n_{1}+k, j-n_{1}+k}\right|}\left|a_{i j}\right|+0 \\
& \leq \sum_{\left.j \in \overline{N_{A} \backslash} \backslash i\right\rangle, j \in S_{1}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|+\sum_{j \in \overline{N_{A} \backslash\left\{i,, j \in S_{2}\right.}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right| \\
& =p_{i}^{\overline{N_{A}}}(A) \text {, } \\
& \left|c_{j j}\right|=\left|a_{j j}\right|, \tag{2.16}\\
& p_{j}^{N_{C}}(C)=\sum_{j, \in N_{C} \backslash\{j\}}\left|c_{j j,}\right|=\sum_{j \in \in N_{A} \backslash\{j\}}\left|a_{j j}\right|=p_{j}^{N_{A}}(A), \tag{2.17}\\
& p_{i}^{N_{C}}(C)=\sum_{\left.j \in N_{C} \backslash \backslash i\right\}}\left|c_{i j}\right|=\sum_{j \in N_{A} \backslash\{i\}}\left|a_{i j}\right|=p_{i}^{N_{A}}(A),
\end{align*}
$$

$$
\begin{aligned}
& p_{j}^{\overline{N_{C}}}(C)=\sum_{j \prime \in \overline{N_{C}} \backslash\{j\}, j^{\prime} \in S_{1}} \frac{r_{j \prime}(C)}{\left|c_{j j^{\prime}}\right|}\left|c_{j j^{\prime}}\right|+\sum_{j \prime \in \overline{N_{C} \backslash\{j\}, j^{\prime} \in S_{2}}} \frac{r_{j \prime}(C)}{\left|c_{j^{\prime} j \prime}\right|}\left|c_{j j^{\prime}}\right|+\sum_{j^{\prime} \in \overline{N_{C} \backslash\{j\}, j^{\prime} \in S_{3}}} \frac{r_{j^{\prime}}(C)}{\left|c_{j^{\prime} j^{\prime} \prime}\right|}\left|c_{j j^{\prime}}\right| \\
& =\sum_{j \prime \in \overline{N_{A}} \backslash\{j\}, j \in \mathcal{S}_{1}} \frac{r_{j \prime}(A)}{\left|a_{j \prime j}\right|}\left|a_{j j^{\prime}}\right|+\sum_{j \prime \in \overline{N_{A}} \backslash\{j\}, j \in S_{2}} \frac{\lambda_{j \prime}}{\left|a_{j \prime j^{\prime}}+b_{j \prime-n_{1}+k, j^{\prime}-n_{1}+k}\right|}\left|a_{j j^{\prime}}\right|+0 \\
& \leq \sum_{j^{\prime} \in \overline{N_{A}} \backslash\{j\}, j^{\prime} \in S_{1}} \frac{r_{j^{\prime}}(A)}{\left|a_{j^{\prime} j^{\prime}}\right|}\left|a_{j j^{\prime}}\right|+\sum_{j^{\prime} \in \overline{N_{A}} \backslash\{j\}, j^{\prime} \in S_{2}} \frac{r_{j^{\prime}}(A)}{\left|a_{j^{\prime} j^{\prime}}\right|}\left|a_{j j^{\prime}}\right| \\
& =p_{j}^{\overline{N_{A}}}(A) \text {. }
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left(r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)\right)\left(\left|c_{j j}\right|-p_{j}{ }^{N_{C}}(C)\right) & \geq\left(r_{i}(A)-p_{i}^{\overline{N_{A}}}(A)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right) \\
& >p_{i}^{N_{A}}(A) p_{j}^{\overline{N_{A}}}(A) \\
& \geq p_{i}^{N_{C}}(C) p_{j}^{\overline{N_{C}}}(C) .
\end{aligned}
$$

Case 2. For $i \in \overline{N_{C}} \cap S_{2}=\overline{N_{A}} \cap S_{2} \subset S_{2}, j \in N_{C}$, we obtain that

$$
\begin{aligned}
& r_{i}(C)=\lambda_{i}, \\
& p_{i}^{\overline{N_{C}}}(C)=\sum_{j \in \overline{N_{C} \backslash \backslash i, j, j S_{1}}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right|+\sum_{j \in \bar{N}_{C} \backslash \backslash i,, j \in S_{2}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right|+\sum_{j \in \overline{N_{C} \backslash\left\{i,, j \in S_{3}\right.}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right| \\
& =\sum_{\left.j \in \overline{N_{A} \backslash} \backslash i\right\}, j \in S_{1}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|+\sum_{j \in \sum_{\overline{N_{A}} \backslash\left\{i, j, j \in S_{2}\right.} \frac{\lambda_{j}}{\left|a_{j j}+b_{j-n_{1}+k, j-n_{1}+k}\right|}\left|a_{i j}+b_{i-n_{1}+k, j-n_{1}+k}\right|}^{r_{j}} \\
& +\sum_{\substack{\left.j \in \overline{N_{B}} \backslash i,-n_{1}+k\right\} \\
j \in\left\{k+1, \ldots n_{2}\right\}}} \frac{r_{j}(B)}{\left|b_{j j}\right|}\left|b_{i-n_{1}+k, j}\right| \\
& \leq \sum_{j \in \overline{N_{A} \backslash i i, j, j \in S_{1}}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|+\sum_{j \in \overline{N_{A}} \backslash\left\{i,, j \in S_{2}\right.} \frac{\lambda_{j}}{\left|a_{j j}+b_{j-n_{1}+k, j-n_{1}+k}\right|}\left|a_{i j}\right| \\
& +\sum_{j \in \overline{N_{A}} \backslash i i, j, j \in S_{2}} \frac{\lambda_{j}}{\left|a_{j j}+b_{j-n_{1}+k, j-n_{1}+k}\right|}\left|b_{i-n_{1}+k, j-n_{1}+k}\right|+\sum_{\substack{j \in \overline{N_{B} \backslash \backslash i-n_{1}+k k} \\
j \in\left(k+1, \ldots, n_{2}\right\}}} \frac{r_{j}(B)}{\left|b_{j j}\right|}\left|b_{i-n_{1}+k, j}\right| \\
& \leq \sum_{j \in \overline{N_{A} \backslash i i, j, j \in S_{1}}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|+\sum_{j \in \overline{N_{A} \backslash\left\{i, j, j \in S_{2}\right.}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right| \\
& +\sum_{\substack{j \in \overline{N_{B}} \backslash\left\{i-n_{1}+k\right\} \\
j \in\{1, \ldots k\}}} \frac{\lambda_{j+n_{1}-k}}{\left|a_{j+n_{1}-k, j+n_{1}-k}+b_{j j}\right|}\left|b_{i-n_{1}+k, j}\right|+\sum_{\substack{j \in \overline{N_{B}} \backslash\left\{i-n_{1}+k\right\} \\
j\left\{k+1, \ldots n_{2}\right\}}} \frac{r_{j}(B)}{\left|b_{j j}\right|}\left|b_{i-n_{1}+k, j}\right| \\
& \leq p_{i}^{\overline{N_{A}}}(A)+\sum_{\substack{\left.j \in \overline{N_{N}} \backslash\left\{i-n_{1}+k\right\} \\
j \in 1, \ldots k\right\}}} \frac{r_{j}(B)}{\left|b_{j j}\right|}\left|b_{i-n_{1}+k, j}\right|+\sum_{\substack{\left.j \overline{N_{B}} \backslash \backslash i-n_{1}+k\right\} \\
j \in\left\{k+1, \ldots n_{2}\right\}}} \frac{r_{j}(B)}{\left|b_{j j}\right|}\left|b_{i-n_{1}+k, j}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =p_{i}^{\overline{N_{A}}}(A)+p_{i-n_{1}+k}^{\overline{N_{B}}}(B), \\
& \quad p_{i}^{N_{C}}(C)=\sum_{j \in N_{C} \backslash\{i\}}\left|c_{i j}\right|=\sum_{j \in N_{A} \backslash\{i\}}\left|a_{i j}\right|=p_{i}^{N_{A}}(A) .
\end{aligned}
$$

We know that $\left|c_{j j}\right|, p_{j}{ }^{N_{C}}(C)$, and $p_{j} \overline{N_{C}}(C)$ are the same as (2.16), (2.17), and (2.18). Therefore,

$$
\begin{aligned}
\left(r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)\right)\left(\left|c_{j j}\right|-p_{j}^{N_{C}}(C)\right) & \geq\left(\lambda_{i}-p_{i}^{\overline{N_{A}}}(A)-p_{i-n_{1}+k^{\overline{N_{B}}}}^{\overline{N_{A}}}(B)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right) \\
& \geq r_{i}(A)+p_{i-n_{1}+k}^{\overline{N_{B}}}(B)-p_{i}^{\overline{N_{A}}}(A)-p_{i-n_{1}+k^{\overline{N_{B}}}}(B) \\
& \times\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right) \\
& =\left(r_{i}(A)-p_{i}^{\overline{N_{A}}}(A)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right) \\
& >p_{i}^{N_{A}}(A) p_{j}^{\overline{N_{A}}}(A) \\
& \geq p_{i}^{N_{C}}(C) p_{j}^{\overline{N_{C}}}(C) .
\end{aligned}
$$

Case 3. For $i \in \overline{N_{C}} \cap S_{3} \subset S_{3}, j \in N_{C}$, specifically, we obtain that

$$
p_{i}^{N_{C}}(C)=\sum_{j \in N_{C}(i)}\left|c_{i j}\right|=0 .
$$

Hence,

$$
\begin{aligned}
\left(r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)\right)\left(\left|c_{j j}\right|-p_{j}^{N_{C}}(C)\right) & =\left(r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right) \\
& >0 \\
& =p_{i}^{N_{C}}(C) p_{j}^{\overline{N_{C}}}(C) .
\end{aligned}
$$

Therefore, we get that $r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)>0$ and $\left(r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)\right)\left(\left|c_{j j}\right|-p_{j}^{N_{C}}(C)\right)>p_{i}^{N_{C}}(C) p_{j}^{\overline{N_{C}}}(C)$ for any $i \in \overline{N_{C}}, j \in N_{C}$.

Corollary 2.1. Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be square matrices of order n_{1} and n_{2} partitioned as in (1.1), respectively. And let $2 \leq k \leq \min \left\{n_{1}, n_{2}\right\}, S_{1}, S_{2}$, and S_{3} be as in (1.2). We assume A is a $G S D D_{1}$ matrix and B is an $S D D$ matrix with $r_{i}(B)>0$ for all $i \in \overline{N_{B}}$. If all diagonal entries of A_{22} and B_{11} are positive (or all negative), $i \in \overline{N_{A}}$ for any $i \in S_{2}$ and

$$
\begin{gathered}
\frac{\lambda_{j}}{\left|a_{j j}+b_{j-n_{1}+k, j-n_{1}+k}\right|} \leq \min \left\{\frac{r_{j}(A)}{\left|a_{j j}\right|}, \frac{r_{j-n_{1}+k}(B)}{\left|b_{j-n_{1}+k, j-n_{1}+k}\right|}\right\},\left(j \in S_{2}\right) \\
\lambda_{i} \geq r_{i}(A)+p_{i-n_{1}+k} \overline{N_{B}}(B),
\end{gathered}
$$

where λ_{i} is the same as λ_{i} of Theorem 2.3 and $i \in S_{2}$, then the k-subdirect sum $C=A \oplus_{k} B$ is a GSDD D_{1} matrix.

Proof. For the inequality

$$
\frac{\lambda_{i}}{\left|a_{i i}+b_{i-n_{1}+k, i-n_{1}+k}\right|} \leq \frac{r_{i}(A)}{\left|a_{i i}\right|},
$$

multiplying both sides of this inequality by $\left|a_{i j}\right|\left(i \in S_{1} \cup S_{2}, \quad j \neq i\right)$ and summing for every $j \in \overline{N_{A}} \backslash\{i\}$ $\left(j \in S_{2}\right)$, we have

$$
\sum_{j \in \overline{N_{A} \backslash\left\{i, j, j S_{2}\right.}} \frac{\lambda_{j}}{\left|a_{j j}+b_{j-n_{1}+k, j-n_{1}+k}\right|}\left|a_{i j}\right| \leq \sum_{j \in \overline{N_{A} \backslash\left\{i,, j \in S_{2}\right.}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right| .
$$

Similarly, for $i \in S_{2}$, we obtain that

$$
\sum_{\substack{j \in \overline{N_{B} \backslash\left\{i-n_{1}+k\right\}} \\ j \in\{1, \ldots k\}}} \frac{\lambda_{j+n_{1}-k}}{\left|a_{j+n_{1}-k, j+n_{1}-k}+b_{j j}\right|}\left|b_{i-n_{1}+k, j}\right| \leq \sum_{\substack{\left.j \in \overline{B_{1} \backslash\left\{i-n_{1}+k\right\}} \\ j \in \mid 1, \ldots\right\}}} \frac{r_{j}(B)}{\left|b_{j j}\right|}\left|b_{i-n_{1}+k, j}\right| .
$$

By Theorem 2.3, we obtain that the k-subdirect sum $C=A \oplus_{k} B$ is a $G S D D_{1}$ matrix.
Theorem 2.4. Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be square matrices of order n_{1} and n_{2} partitioned as in (1.1), respectively. And let $2 \leq k \leq \min \left\{n_{1}, n_{2}\right\}, S_{1}, S_{2}$, and S_{3} be as in (1.2). We assume A is a $G S D D_{1}$ matrix and B is an $S D D$ matrix with $r_{i}(B)>0$ for all $i \in \overline{N_{B}}$. If all diagonal entries of A_{22} and B_{11} are positive (or all negative), $i \in N_{A}$ for any $i \in S_{2},\left|a_{i i}\right|+\left|b_{i-n_{1}+k, i-n_{1}+k}\right| \leq \lambda_{i}$ and

$$
\begin{aligned}
& \left|b_{j-n_{1}+k, j-n_{1}+k}\right|-\sum_{\substack{j \in \in \overline{N_{B} \backslash\left\{j-n_{1}+k\right\}} \\
j \in \in[1, \ldots, k]}}\left|a_{j, j i+n_{1}-k}+b_{j-n_{1}+k, j}\right| \geq p_{j-n_{1}+k} \overline{\bar{N}_{B}}(B), \quad\left(j \in S_{2}\right) \\
& \min _{k+1 \leq l \leq n_{2}}\left(r_{l}(B)-p_{l}^{\overline{N_{B}}}(B)\right) \geq \max _{m \in \overline{N_{A}}}\left(r_{m}(A)-p_{m}^{\overline{N_{A}}}(A)\right), \\
& \min _{m \in \overline{N_{A}}} p_{m}^{N_{A}}(A) \geq \max _{k+1 \leq \leq \leq n_{2}} \sum_{j \in\{1, \ldots, k\}}\left|b_{l j}\right|,
\end{aligned}
$$

where λ_{i} is the same as λ_{i} of Theorem 2.3, then the k-subdirect sum $C=A \oplus_{k} B$ is a GSDD D_{1} matrix.
Proof. Since A is a $G S D D_{1}$ matrix with $i \in N_{A}$ for any $i \in S_{2}$ and $\left|a_{i i}\right|+\left|b_{i-n_{1}+k, i-n_{1}+k}\right| \leq \lambda_{i}$, we have $\left|a_{i i}\right| \leq r_{i}(A)$ and $\left|c_{i i}\right|=\left|a_{i i}\right|+\left|b_{i-n_{1}+k, i-n_{1}+k}\right| \leq \lambda_{i}=r_{i}(C)$, that is, for any $i \in S_{2}$, we have $i \in N_{C}$. Moreover, we know that $i \in N_{C} \cap S_{1}=N_{A} \cap S_{1} \subset S_{1}$, which means that $N_{C}=N_{A}$. Combining Lemmas 2.2 and 2.3, we get that $r_{i}(C) \neq 0$ for $i \in \overline{N_{C}} \cap S_{1} \cup S_{3}=\overline{N_{A}} \cap S_{1} \cup S_{3}$. Therefore, for any $i \in \overline{N_{C}}$, we obtain that

$$
r_{i}(C)=\sum_{j \in N \backslash i\}}\left|c_{i j}\right|>\sum_{j \in \overline{N_{c} \backslash\{i\}}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right|=p_{i}^{\overline{N_{c}}}(C) .
$$

Since $i \in \overline{N_{C}} \cap S_{2}=\emptyset$, we prove it from the following two aspects, which are $i \in \overline{N_{C}} \cap S_{1}=\overline{N_{A}} \cap S_{1} \subset S_{1}$ and $i \in \overline{N_{C}} \cap S_{3} \subset S_{3}$. For any $j \in N_{C}$, that is, $j \in N_{C} \cap S_{1}=N_{A} \cap S_{1} \subset S_{1}$ and $j \in N_{C} \cap S_{2}=N_{A} \cap S_{2} \subset S_{2}$. Therefore, we prove it from the following cases.

Case 1. For $i \in \overline{N_{C}} \cap S_{1}=\overline{N_{A}} \cap S_{1} \subset S_{1}, j \in N_{C} \cap S_{1}=N_{A} \cap S_{1} \subset S_{1}$, we get

$$
\begin{align*}
& r_{i}(C)=r_{i}(A), \tag{2.19}\\
& p_{i}^{\overline{N_{C}}}(C)=\sum_{j \in \overline{N_{C} \backslash\left\{i, j, \epsilon S_{1}\right.}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right|+\sum_{j \in N_{C} \backslash\{i\}, j \in S_{3}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right| \tag{2.20}\\
& =\sum_{j \in \overline{\bar{N}_{\wedge}} \backslash i i} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|+0 \\
& =p_{i}^{\overline{N_{A}}}(A) \text {, } \\
& \left|c_{j j}\right|=\left|a_{j j}\right|, \tag{2.21}\\
& p_{j}^{N_{C}}(C)=\sum_{\left.j, \in N_{C} \backslash \backslash j\right\}}\left|c_{j j j}\right|=\sum_{\left.j ر \in N_{A} \backslash j j\right\}}\left|a_{j j}\right|=p_{j}^{N_{A}}(A), \tag{2.22}\\
& p_{i}^{N_{C}}(C)=\sum_{j \in N_{C} \backslash\{i\}}\left|c_{i j}\right|=\sum_{j \in N_{A} \backslash\{i\}}\left|a_{i j}\right|=p_{i}^{N_{A}}(A), \tag{2.23}\\
& p_{j}^{\overline{N_{C}}}(C)=\sum_{j^{\prime} \in \overline{N_{C}} \backslash j j, j, j_{\epsilon},} \frac{r_{j 1}(C)}{\left|c_{j, j}\right|}\left|c_{j j^{\prime}}\right|+\sum_{j \epsilon \in \overline{N_{C} \backslash\left\langle j, j, j \in S_{3}\right.}} \frac{r_{j,}(C)}{\left|c_{j^{\prime} j^{\prime}}\right|}\left|c_{c_{j j}}\right| \tag{2.24}\\
& =\sum_{j, \in \overline{\bar{N}_{A}} \backslash\{j\}} \frac{r_{j}(A)}{\left|a_{j j_{j},}\right|}\left|a_{j j j^{\prime}}\right|+0 \\
& =p_{j}^{\overline{N_{A}}}(A) \text {. }
\end{align*}
$$

Therefore, we obtain that

$$
\begin{aligned}
\left(r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)\right)\left(\left|c_{j j}\right|-p_{j}^{N_{C}}(C)\right) & =\left(r_{i}(A)-p_{i}^{\overline{N_{A}}}(A)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right) \\
& >p_{i}^{N_{A}}(A) p_{j}^{\overline{N_{A}}}(A) \\
& =p_{i}^{N_{C}}(C) p_{j}^{\overline{N_{C}}}(C) .
\end{aligned}
$$

Case 2. For $i \in \overline{N_{C}} \cap S_{1}=\overline{N_{A}} \cap S_{1} \subset S_{1}, j \in N_{C} \cap S_{2}=N_{A} \cap S_{2} \subset S_{2}$, we know that $r_{i}(C)$ and (2.19) are equal, $p_{i}^{\overline{N_{C}}}(C)$ and (2.20) are equal, and $p_{i}^{N_{C}}(C)$ and (2.23) are equal. Moreover,

$$
\begin{align*}
\left|c_{j j}\right| & =\left|a_{j j}+b_{j-n_{1}+k, j-n_{1}+k}\right|=\left|a_{j j}\right|+\left|b_{j-n_{1}+k, j-n_{1}+k}\right|, \tag{2.25}\\
p_{j}^{N_{C}}(C) & =\sum_{j \in N_{C} \backslash\left\{j, j, j \in S_{1}\right.}\left|c_{j j j}\right|+\sum_{j \in N_{C} \backslash j j, j, j \in S_{2}}\left|c_{j j j}\right| \tag{2.26}
\end{align*}
$$

$$
\begin{align*}
& =\sum_{j \in N_{A} \backslash\left\{j, j, j \in S_{1}\right.}\left|a_{j j}\right|+\sum_{\substack{j \\
j \in \overline{N_{B}} \in\left\{j-n_{1}+k\right\} \\
j \in[1, k\}}}\left|a_{j, j \neq+n_{1}-k}+b_{j-n_{1}+k, j,}\right|, \\
& p_{j}^{\overline{N_{C}}}(C)=\sum_{j^{\prime} \in \overline{N_{C} \backslash\left\{j, j, j \in S_{1}\right.}} \frac{r_{j,}(C)}{\left|c_{j, j^{\prime}}\right|}\left|c_{j j^{\prime}}\right|+\sum_{j \epsilon \in \overline{N_{C}} \backslash\left\langle j, j, j \in S_{3}\right.} \frac{r_{j,}(C)}{\left|c_{j^{\prime} j^{\prime}}\right|}\left|c_{j_{j j}}\right| \tag{2.27}\\
& =\sum_{j \in \overline{N_{A}} \backslash\{j\}} \frac{r_{j}(A)}{\left|a_{j j^{\prime}}\right|}\left|a_{j j^{\prime}}\right|+\sum_{j \in\left\{k+1, \ldots, n_{2}\right\}} \frac{r_{j^{\prime}}(B)}{\left|b_{j^{\prime} j^{\prime},}\right|}\left|b_{j-n_{1}+k, j_{j}}\right| \\
& \leq p_{j}^{\overline{N_{A}}}(A)+p_{j-n_{1}+k} \overline{\overline{N_{B}}}(B) \text {. }
\end{align*}
$$

Hence,

$$
\begin{aligned}
& \left(r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)\right)\left(\left|c_{j j}\right|-p_{j}^{N_{C}}(C)\right) \\
& =\left(r_{i}(A)-p_{i}^{\overline{N_{A}}}(A)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(r_{i}(A)-p_{i}^{\overline{N_{A}}}(A)\right)\left(\left|a_{j j}\right|-\sum_{\left.j, \in N_{A} \backslash j j\right\}, j \in S_{1}}\left|a_{j j j}\right|\right) \\
& +\left(r_{i}(A)-p_{i}^{\overline{N_{A}}}(A)\right)\left(\left|b_{j-n_{1}+k, j-n_{1}+k}\right|-\sum_{\substack{\left.j, \overline{N_{1}} \backslash\left\{j-n_{1}+k\right\} \\
j \in \in i, \ldots l\right\}}}\left|a_{j, j \nmid+n_{1}-k}+b_{\left.j-n_{1}+k, j\right\rangle}\right|\right) \\
& \geq\left(r_{i}(A)-p_{i}^{\overline{N_{A}}}(A)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right)+p_{i}^{N_{A}}(A) p_{j-n_{1}+k} \overline{\overline{N_{B}}}(B) \\
& >p_{i}^{N_{A}}(A) p_{j}^{\overline{N_{A}}}(A)+p_{i}^{N_{A}}(A) p_{j-n_{1}+k^{\overline{N_{B}}}}(B) \\
& \geq p_{i}^{N_{C}}(C) p_{j}^{\overline{N_{C}}}(C) \text {. }
\end{aligned}
$$

Case 3. For $i \in \overline{N_{C}} \cap S_{3} \subset S_{3}, j \in N_{C} \cap S_{1}=N_{A} \cap S_{1} \subset S_{1}$, we obtain that

$$
\begin{align*}
& r_{i}(C)=r_{i-n_{1}+k}(B)=r_{l}(B), \tag{2.28}\\
p_{i}^{\overline{N_{C}}}(C)= & \sum_{j \in \overline{N_{C} \backslash \backslash i, j, j \in S_{1}}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right|+\sum_{j \in \overline{N_{C} \backslash \backslash i, j, j \in S_{3}}} \frac{r_{j}(C)}{\left|c_{j j}\right|}\left|c_{i j}\right| \tag{2.29}\\
= & 0+\sum_{\substack{j \in \overline{N_{B}} \backslash \backslash l l \\
j \in\left\{l_{1}\right.}} \frac{r_{j}(B)}{\left|b_{j j}\right|}\left|b_{l j}\right| \\
\leq & p_{l}^{\overline{N_{B}}}(B),
\end{align*}
$$

$$
\begin{equation*}
p_{i}^{N_{C}}(C)=\sum_{j \in N_{C} \backslash\left\{i, j, j S_{1}\right.}\left|c_{i j}\right|+\sum_{\left.j \in N_{C} \backslash \backslash i\right\}, j \in S_{2}}\left|c_{i j}\right|=0+\sum_{j \in\{1, \ldots, k\}}\left|b_{i-n_{1}+k, j}\right|=\sum_{j \in\{1, \ldots, k\}}\left|b_{l j}\right|, \tag{2.30}
\end{equation*}
$$

where $l=i-n_{1}+k$. We know that $\left|c_{j j}\right|, p_{j}{ }^{N_{C}}(C)$, and $p_{j}{ }^{\overline{N_{C}}}(C)$ are the same as (2.21), (2.22), and (2.24). Therefore,

$$
\begin{aligned}
\left(r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)\right)\left(\left|c_{j j}\right|-p_{j}{ }^{N_{C}}(C)\right) & \geq\left(r_{l}(B)-p_{l}^{\overline{N_{B}}}(B)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right) \\
& \geq\left(r_{m}(A)-p_{m}^{\overline{N_{A}}}(A)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right) \\
& >p_{m}^{N_{A}}(A) p_{j}^{\overline{N_{A}}}(A) \\
& \geq \sum_{j \in\{1, \ldots, k\}}\left|b_{l j}\right| \cdot p_{j}^{\overline{N_{A}}}(A) \\
& =p_{i}^{N_{C}}(C) p_{j}^{\overline{N_{C}}}(C) .
\end{aligned}
$$

Case 4. For $i \in \overline{N_{C}} \cap S_{3} \subset S_{3}, j \in N_{C} \cap S_{2}=N_{A} \cap S_{2} \subset S_{2}$, we obtain that the values of $r_{i}(C), p_{i}^{N_{C}}(C)$, and $p_{i}^{\overline{N_{C}}}(C)$ are equal to (2.28), (2.30), and (2.29). Moreover, the results of $\left|c_{j j}\right|, p_{j}^{N_{C}}(C)$, and $p_{j} \bar{N}_{C}(C)$ are the same as (2.25), (2.26), and (2.27). Hence, we arrive at

$$
\begin{aligned}
& \left(r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)\right)\left(\left|c_{j j}\right|-p_{j}^{N_{C}}(C)\right) \\
& \geq\left(r_{l}(B)-p_{l} \overline{N_{B}}(B)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(r_{l}(B)-p_{l}^{\overline{N_{B}}}(B)\right)\left(\left|a_{j j}\right|-\sum_{j, \in N_{A} \backslash\left\{j \mid, j \in S_{1}\right.}\left|a_{j j j}\right|\right) \\
& +\left(r_{l}(B)-p_{l}^{\overline{N_{B}}}(B)\right)\left(\left|b_{j-n_{1}+k, j-n_{1}+k}\right|-\sum_{\substack{j, \overline{N_{y} \backslash\left\{j-n_{1}+k\right\}} \\
j, \in\{1, k k\}}}\left|a_{j, j \neq+n_{1}-k}+b_{j-n_{1}+k, j l}\right|\right) \\
& \geq\left(r_{m}(A)-p_{m} \overline{N_{A}}(A)\right)\left(\left|a_{j j}\right|-p_{j}^{N_{A}}(A)\right)+\left(r_{m}(A)-p_{m}^{\overline{N_{A}}}(A)\right) p_{j-n_{1}+k} \overline{\overline{N_{B}}}(B) \\
& >p_{m}{ }^{N_{A}}(A) p_{j}^{\overline{N_{A}}}(A)+p_{m}{ }^{N_{A}}(A) p_{j-n_{1}+k}^{\overline{N_{B}}}(B) \\
& =p_{m}^{N_{A}}(A)\left(p_{j}^{\overline{N_{A}}}(A)+p_{j-n_{1}+k^{\overline{N_{B}}}}(B)\right) \\
& \geq \sum_{j \in\{1, \ldots, k\}}\left|b_{l j}\right| \cdot\left(p_{j}^{\overline{N_{A}}}(A)+p_{j-n_{1}+k^{\overline{N_{B}}}}(B)\right) \\
& \geq p_{i}^{N_{C}}(C) p_{j} \overline{N_{C}}(C) \text {. }
\end{aligned}
$$

In conclusion, for any $i \in \overline{N_{C}}, j \in N_{C}$, we successfully derive that $r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)>0$ and $\left(r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)\right)\left(\left|c_{j j}\right|-p_{j}^{N_{C}}(C)\right)>p_{i}^{N_{C}}(C) p_{j}^{\overline{N_{C}}}(C)$. Therefore, $C=A \oplus_{k} B$ is a $G S D D_{1}$ matrix.

Example 2.4. Consider the following matrices:

$$
A=\left(\begin{array}{cccccc}
7.5 & 1 & 2 & 2 & 1 & 2.5 \\
1 & 7 & 0.3 & 1 & 2 & 0.2 \\
1.1 & 1.3 & 5 & 1 & 0.8 & 1 \\
0.4 & 1 & 0.2 & 6.5 & 1.2 & 0.9 \\
0.3 & 1 & 0.2 & -0.9 & 6.6 & 1.4 \\
0.7 & 0.9 & 0.1 & 1.2 & -1 & 8
\end{array}\right), \quad B=\left(\begin{array}{ccccc}
65 & -1.5 & -2 & 1 & 1.5 \\
1.2 & 66 & -2.3 & 1.6 & 0.9 \\
-1.4 & 2 & 67 & 1.3 & 1.2 \\
3 & 3.4 & 2 & 66 & 0.6 \\
0.4 & 2.1 & 1 & 1.8 & 77
\end{array}\right),
$$

where A is a $G S D D_{1}$ matrix with $i \in \overline{N_{A}}$ for all $i \in S_{2}$, and B is an $S D D$ matrix with $r_{i}(B)>0$ for all $i \in \overline{N_{B}}$. By computation, we derive $N_{A}=\{1,3\}, \overline{N_{A}}=\{2,4,5,6\}$. Moreover,

$$
\begin{gathered}
\frac{\lambda_{4}}{\left|a_{44}+b_{11}\right|}=\frac{5.5}{71.5} \approx 0.077<0.569 \approx \frac{3.7}{6.5}=\frac{r_{4}(A)}{\left|a_{44}\right|}, \frac{\lambda_{5}}{\left|a_{55}+b_{22}\right|}=\frac{5.2}{72.6} \approx 0.072<0.576 \approx \frac{3.8}{6.6}=\frac{r_{5}(A)}{\left|a_{55}\right|} \\
\frac{\lambda_{6}}{\left|a_{66}+b_{33}\right|}=\frac{5.4}{75}=0.072<0.488 \approx \frac{3.9}{8}=\frac{r_{6}(A)}{\left|a_{66}\right|}
\end{gathered}
$$

we get that $\sum_{j \in \overline{N_{A}} \backslash\{i\}, j \in S_{2}} \frac{\lambda_{j}}{\left|a_{j j}+b_{j-n_{1}+k, j-n_{1}+k}\right|}\left|a_{i j}\right| \leq \sum_{j \in \overline{N_{A}} \backslash\{i\}, j \in S_{2}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|$ is true for $i \in S_{1} \cup S_{2}$.

$$
\begin{gathered}
\frac{\lambda_{4}}{\left|a_{44}+b_{11}\right|} \approx 0.077<0.092 \approx \frac{6}{65}=\frac{r_{1}(B)}{\left|b_{11}\right|}, \frac{\lambda_{5}}{\left|a_{55}+b_{22}\right|} \approx 0.072<0.091 \approx \frac{6}{66}=\frac{r_{2}(B)}{\left|b_{22}\right|} \\
\frac{\lambda_{6}}{\left|a_{66}+b_{33}\right|}=0.072<0.088 \approx \frac{5.9}{67}=\frac{r_{3}(B)}{\left|b_{33}\right|}
\end{gathered}
$$

we have that the second sufficient condition in Theorem 2.3 is true.
$\lambda_{4}=5.5>4.252=3.7+0.552 \approx r_{4}(A)+p_{1}{ }^{\overline{N_{B}}}(B), \quad \lambda_{5}=5.2>4.393=3.8+0.593 \approx r_{5}(A)+p_{2}{ }^{\overline{N_{B}}}(B)$,

$$
\lambda_{6}=5.4>4.471=3.9+0.571 \approx r_{6}(A)+p_{3}^{\overline{N_{B}}}(B)
$$

we get that the third sufficient condition in Theorem 2.3 is met. Therefore, by Theorem $2.3, C=A \oplus_{3} B$ is a GS DD D_{1} matrix. In fact,

$$
C=\left(\begin{array}{cccccccc}
7.5 & 1 & 2 & 2 & 1 & 2.5 & 0 & 0 \\
1 & 7 & 0.3 & 1 & 2 & 0.2 & 0 & 0 \\
1.1 & 1.3 & 5 & 1 & 0.8 & 1 & 0 & 0 \\
0.4 & 1 & 0.2 & 71.5 & -0.3 & -1.1 & 1 & 1.5 \\
0.3 & 1 & 0.2 & 0.3 & 72.6 & -0.9 & 1.6 & 0.9 \\
0.7 & 0.9 & 0.1 & -0.2 & 1 & 75 & 1.3 & 1.2 \\
0 & 0 & 0 & 3 & 3.4 & 2 & 66 & 0.6 \\
0 & 0 & 0 & 0.4 & 2.1 & 1 & 1.8 & 77
\end{array}\right)
$$

where $N_{C}=\{1,3\}, \overline{N_{C}}=\{2,4,5,6,7,8\}$. By computation,

$$
\begin{aligned}
& r_{2}(C)=4.5, \quad p_{2} \overline{N_{C}}(C) \approx 0.235, p_{2}{ }^{N_{C}}(C)=1.3 ; r_{4}(C)=5.5, \quad p_{4}{ }^{\overline{N_{C}}}(C) \approx 0.983, \quad p_{4}{ }^{N_{C}}(C)=0.6 ; \\
& r_{5}(C)=5.2, \quad p_{5}{ }^{\overline{N_{C}}}(C) \approx 1.011, \quad p_{5}{ }^{N_{C}}(C)=0.5 ; \quad r_{6}(C)=5.4, \quad p_{6}{ }^{\overline{N_{C}}}(C) \approx 0.925, \quad p_{6}{ }^{N_{C}}(C)=0.8 ; \\
& r_{7}(C)=9, \quad p_{7}{ }^{\overline{N_{C}}}(C) \approx 0.66, \quad p_{7}{ }^{N_{C}}(C)=0 ; r_{8}(C)=5.3, \quad p_{8}{ }^{\overline{N_{C}}}(C) \approx 0.499, \quad p_{8}{ }^{N_{C}}(C)=0 ; \\
& \left|c_{11}\right|=7.5, \quad p_{1}{ }^{N_{C}}(C)=2, \quad p_{1} \overline{N_{C}}(C) \approx 1.048 ;\left|c_{33}\right|=5, \quad p_{3}{ }^{N_{C}}(C)=1.1, \quad p_{3}{ }^{\overline{N_{C}}}(C) \approx 1.042 .
\end{aligned}
$$

It is not difficult to find that $r_{i}(C)-p_{i}{ }^{\overline{N_{C}}}(C)>p_{i}^{N_{C}}(C)$ and $\left|c_{j j}\right|-p_{j}^{N_{C}}(C)>p_{j}{ }^{\overline{N_{C}}}(C)$ when $i \in \overline{N_{C}}$, $j \in N_{C}$. So we deduce that $r_{i}(C)>p_{i}^{\overline{N_{C}}}(C)$ and $\left(r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)\right)\left(\left|c_{j j}\right|-p_{j}^{N_{C}}(C)\right)>p_{i}^{N_{C}}(C) p_{j}^{\overline{N_{C}}}(C)$ are true when $i \in \overline{N_{C}}, j \in N_{C}$. Thus, $C=A \oplus_{3} B$ is a $G S D D_{1}$ matrix.

Example 2.5. Consider the following matrices:

$$
A=\left(\begin{array}{ccccccc}
6 & 2 & 0.5 & 1 & 1 & 0.8 & 1.2 \\
0.1 & 8 & 0.7 & 0.3 & 1 & 1.3 & 0.8 \\
0.5 & 0.8 & 7.7 & 1.1 & 1.2 & 0.3 & 0.1 \\
2.1 & 1.5 & 0.9 & 8 & 1.8 & 0.6 & 1.7 \\
0.3 & 0.7 & 1.4 & 1 & 8.4 & 2.5 & 2.8 \\
1.6 & 2.5 & 2 & 1 & 1.7 & 9.2 & 1.1 \\
0.8 & 1.2 & 1.6 & 2.4 & 1.8 & 1.5 & 9
\end{array}\right), \quad B=\left(\begin{array}{cccccc}
40 & 2 & 1 & 0.7 & 15 & 20.8 \\
1.2 & 45 & 3 & 2.5 & 19 & 19.2 \\
2.5 & 2.1 & 54 & 1.1 & 21 & 26.9 \\
1.8 & 2.4 & 0.9 & 61 & 25 & 30.8 \\
0.5 & 1 & 1.3 & 0.2 & 65 & 10 \\
1.4 & 0.4 & 0.7 & 0.5 & 9.9 & 68
\end{array}\right),
$$

where A is a GSDD. matrix and B is an $S D D$ matrix with $r_{i}(B)>0$ for all $i \in \overline{N_{B}}$. By computation, $N_{A}=\{1,4,5,6,7\}, S_{2}=\{4,5,6,7\}$,

$$
\begin{aligned}
& \left|a_{44}\right|+\left|b_{11}\right|=48<48.1=\lambda_{4}, \quad\left|a_{55}\right|+\left|b_{22}\right|=53.4<53.6=\lambda_{5}, \\
& \left|a_{66}\right|+\left|b_{33}\right|=63.2<63.5=\lambda_{6}, \quad\left|a_{77}\right|+\left|b_{44}\right|=70<70.2=\lambda_{7} .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \left|b_{11}\right|-\sum_{\left.j \epsilon \in \overline{N_{B}} \backslash 11\right\}, j \epsilon \in\{1, \ldots, 4\}}\left|a_{4, j+3}+b_{1 j}\right|=32.2>10.633 \approx p_{1} \overline{N_{B}}(B), \\
& \left|b_{22}\right|-\sum_{j \prime \in \overline{N_{B}} \backslash\{2\}, j \epsilon\{\{1, \ldots, 4\}}\left|a_{5, j j^{\prime}+3}+b_{2 j}\right|=32>14.101 \approx p_{2}^{\overline{N_{B}}}(B), \\
& \left|b_{33}\right|-\sum_{j \epsilon \overline{N_{B}} \backslash\{3\}, j \epsilon \in\{1, \ldots, 4\}}\left|a_{6, j+3}+b_{3 j}\right|=44.5>14.965 \approx p_{3}{ }^{\overline{N_{B}}}(B),
\end{aligned}
$$

$$
\begin{gathered}
\left|b_{44}\right|-\sum_{\left.j, \overline{N_{B}} \backslash 4\right\}, j, j \in\{1, \ldots, 4\}}\left|a_{7, j,+3}+b_{4 j}\right|=50.2>15.908 \approx p_{4} \overline{N_{B}}(B) . \\
\min _{k+1 \leq l \leq n_{2}}\left(r_{l}(B)-p_{l}^{\overline{N_{B}}}(B)\right)=r_{6}(B)-p_{6} \overline{\bar{N}_{B}}(B) \approx 7.944 \\
>3.836 \approx r_{2}(A)-p_{2} \overline{\bar{N}_{A}}(A)=\max _{m \in \overline{N_{A}}}\left(r_{m}(A)-p_{m} \overline{\bar{N}_{A}}(A)\right), \\
\min _{m \in \overline{N_{A}}} p_{m}{ }^{N_{A}}(A)=p_{3}{ }^{N_{A}}(A)=3.2>3=\sum_{j \in\{1, \ldots, 4\}}\left|b_{5 j}\right|=\sum_{j \in\{1, \ldots, 4\}}\left|b_{6 j}\right|=\max _{k+1 \leq l \leq n_{2}} \sum_{j \in\{1, \ldots, k\}}\left|b_{l j}\right| .
\end{gathered}
$$

Hence, the conditions in Theorem 2.4 are met. By Theorem 2.4, $C=A \oplus_{4} B$ is a $G S D D_{1}$ matrix. In fact,

$$
C=\left(\begin{array}{ccccccccc}
6 & 2 & 0.5 & 1 & 1 & 0.8 & 1.2 & 0 & 0 \\
0.1 & 8 & 0.7 & 0.3 & 1 & 1.3 & 0.8 & 0 & 0 \\
0.5 & 0.8 & 7.7 & 1.1 & 1.2 & 0.3 & 0.1 & 0 & 0 \\
2.1 & 1.5 & 0.9 & 48 & 3.8 & 1.6 & 2.4 & 15 & 20.8 \\
0.3 & 0.7 & 1.4 & 2.2 & 53.4 & 5.5 & 5.3 & 19 & 19.2 \\
1.6 & 2.5 & 2 & 3.5 & 3.8 & 63.2 & 2.2 & 21 & 26.9 \\
0.8 & 1.2 & 1.6 & 4.2 & 4.2 & 2.4 & 70 & 25 & 30.8 \\
0 & 0 & 0 & 0.5 & 1 & 1.3 & 0.2 & 65 & 10 \\
0 & 0 & 0 & 1.4 & 0.4 & 0.7 & 0.5 & 9.9 & 68
\end{array}\right) .
$$

By computation, $N_{C}=\{1,4,5,6,7\}, \overline{N_{C}}=\{2,3,8,9\}$. Moreover,

$$
\begin{gathered}
r_{2}(C)=4.2, p_{2}{ }^{\overline{N_{C}}}(C) \approx 0.364, p_{2}{ }^{N_{C}}(C)=3.5 ; r_{3}(C)=4, p_{3}{ }^{\overline{N_{C}}}(C)=0.42, p_{3}{ }^{N_{C}}(C)=3.2 ; \\
r_{8}(C)=13, p_{8}{ }^{\overline{N_{C}}}(C) \approx 1.897, p_{8}{ }^{N_{C}}(C)=3 ; r_{9}(C)=12.9, \quad p_{9}{ }^{\overline{N_{C}}}(C)=1.98, p_{9}{ }^{N_{C}}(C)=3 . \\
\left|c_{11}\right|=6, p_{1}{ }^{N_{C}}(C)=4, p_{1}{ }^{\overline{N_{C}}}(C) \approx 1.31 ;\left|c_{44}\right|=48, p_{4}{ }^{N_{C}}(C)=9.9, p_{4}{ }^{\overline{N_{C}}}(C) \approx 8.201 ; \\
\left|c_{55}\right|=53.4, \quad p_{5}{ }^{N_{C}}(C)=13.3, p_{5}{ }^{\overline{N_{C}}}(C) \approx 8.537 ;\left|c_{66}\right|=63.2, \quad p_{6}{ }^{N_{C}}(C)=11.1, \quad p_{6}{ }^{\overline{N_{C}}}(C) \approx 11.655 ; \\
\left|c_{77}\right|=70, \quad p_{7}{ }^{N_{C}}(C)=11.6, p_{7}{ }^{\overline{N_{C}}}(C) \approx 12.304 .
\end{gathered}
$$

We see that $r_{i}(C)-p_{i} \overline{N_{C}}(C)>p_{i}^{N_{C}}(C)$ and $\left|c_{j j}\right|-p_{j}^{N_{C}}(C)>p_{j}^{\overline{N_{C}}}(C)$ when $i \in \overline{N_{C}}, j \in N_{C}$. Therefore, we obtain that $r_{i}(C)>p_{i}^{\overline{N_{C}}}(C)$ and $\left(r_{i}(C)-p_{i}^{\overline{N_{C}}}(C)\right)\left(\left|c_{j j}\right|-p_{j}{ }^{N_{C}}(C)\right)>p_{i}{ }^{N_{C}}(C) p_{j}^{\overline{N_{C}}}(C)$ are true when $i \in \overline{N_{C}}, j \in N_{C}$. Therefore, $C=A \oplus_{4} B$ is a $G S D D_{1}$ matrix.
Remark 2.1. Since the subdirect sum of matrices does not satisfy the commutative law, if we change " A is a GSDD matrix, and B is an SDD matrix" to " A is an $S D D$ matrix, and B is a GS DD D_{1} matrix", then we will obtain new sufficient conditions by using similar proofs in this paper.

3. Conclusions

In this paper, some sufficient conditions are given to show that the subdirect sum of $G S D D_{1}$ matrices with $S D D$ matrices is in the class of $G S D D_{1}$ matrices, and these conditions are only dependent on the elements of the given matrices. Furthermore, some numerical examples are also presented to illustrate the corresponding theoretical results.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China (31600299), Natural Science Basic Research Program of Shaanxi, China (2020JM-622), and the Postgraduate Innovative Research Project of Baoji University of Arts and Sciences (YJSCX23YB33).

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. S. M. Fallat, C. R. Johnson, Subdirect sums and positivity classes of matrices, Linear Algebra Appl., 288 (1999), 149-173. https://doi.org/10.1016/s0024-3795(98)10194-5
2. R. Bru, F. Pedroche, D. B. Szyld, Subdirect sums of S-strictly diagonally dominant matrices, Electron. J. Linear Algebra, 15 (2006), 201-209. https://doi.org/10.13001/1081-3810.1230
3. R. Bru, F. Pedroche, D. B. Szyld, Subdirect sums of nonsingular M-matrices and of their invers-e, Electron. J. Linear Algebra, 13 (2005), 162-174. https://doi.org/10.13001/1081-3810.1159
4. A. Frommer, D. B. Szyld, Weighted max norms, splittings, and overlapping additive Schwarz iterations, Numer. Math., 83 (1999), 259-278. https://doi.org/10.1007/s002110050449
5. R. Bru, F. Pedroche, D. B. Szyld, Additive Schwarz iterations for Markov chains, SIAM J. Matrix Anal. Appl., 27 (2005), 445-458. https://doi.org/10.1137/040616541
6. X. Y. Chen, Y. Q. Wang, Subdirect Sums of $S D D_{1}$ Matrices, J. Math., 2020 (2020), 1-20. https://doi.org/10.1155/2020/3810423
7. Y. T. Li, X. Y. Chen, Y. Liu, L. Gao, Y. Q. Wang, Subdirect sums of doubly strictly diagonally dominant matrices, J. Math., 2021 (2021), 3810423. https://doi.org/10.1155/2021/6624695
8. C. Q. Li, Q. L. Liu, L. Gao, Y. T. Li, Subdirect sums of Nekrasov matrices, Linear Multilinear A., 64 (2016), 208-218. https://doi.org/10.1080/03081087.2015.1032198
9. J. Xue, C. Q. Li, Y. T. Li, On subdirect sums of Nekrasov matrices, Linear Multilinear A., 72 (2023), 1044-1055. https://doi.org/10.1080/03081087.2023.2172378
10. Z. H. Lyu, X. R. Wang, L. S. Wen, k-subdirect sums of Nekrasov matrices, Electron. J. Linear Al., 38 (2022), 339-346. https://doi.org/10.13001/ela.2022.6951
11. L. Gao, H. Huang, C. Q. Li, Subdirect sums of $Q N$-matrices, Linear Multilinear A., 68 (2020), 1605-1623. https://doi.org/10.1080/03081087.2018.1551323
12. Q. L. Liu, J. F. He, L. Gao, C. Q. Li, Note on subdirect sums of $S D D(p)$ matrices, Linear Multilinear A., 70 (2022), 2582-2601. https://doi.org/10.1080/03081087.2020.1807457
13. C. Q. Li, R. D. Ma, Q. L. Liu, Y. Li, Subdirect sums of weakly chained diagonally dominant matrices, Linear Multilinear A., 65 (2017),1220-1231. https://doi.org/10.1080/03081087.2016.1233933
14. L. Gao, Y. Liu, On $O B S$ matrices and $O B S$ - B matrices, Bull. Iran. Math. Soc., 48 (2022), 2807-2824. https://doi.org/10.1007/s41980-021-00669-6
15. J. Xia, Note on subdirect sums of $\left\{i_{0}\right\}$-Nekrasov matrices, AIMS Math., 7 (2022), 617-631. https://doi.org/10.3934/math. 2022039
16. L. Gao, Q. L. Liu, C. Q. Li, Y. T. Li, On $\left\{p_{1}, p_{2}\right\}$-Nekrasov matrices, Bull. Malays. Math. Sci. Soc., 44 (2021), 2971-2999. https://doi.org/10.1007/s40840-021-01094-y
17. L. Liu, X. Y. Chen, Y. T. Li, Y. Q. Wang, Subdirect sums of Dashnic-Zusmanovich matrices, B. Sci. Math., 173 (2021), 103057. https://doi.org/10.1016/j.bulsci.2021.103057
18. C. M. Araújo, S. Mendes-Gonçalves, On a class of nonsingular matrices containing B-matrices, Linear Algebra Appl., 578 (2019), 356-369. https://doi.org/10.1016/j.laa.2019.05.015
19. C. M. Araújo, J. R. Torregrosa, Some results on B-matrices and doubly B-matrices, Linear Algebra Appl., 459 (2014), 101-120. https://doi.org/10.1016/j.laa.2014.06.048
20. P. F. Dai, J. P. Li, S. Y. Zhao, Infinity norm bounds for the inverse for $G S D D_{1}$ matrices using scaling matrices, Comput. Appl. Math., 42 (2023), 121. https://doi.org/10.1007/s40314-022-02165-x
© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)
