Let $ \alpha\in (1, 2], \beta\in (0, 1) $ with $ \alpha-\beta > 1 $. This paper focused on the multiplicity of positive solutions for a singular tempered fractional boundary value problem
$ \begin{equation*} \left\{\begin{aligned}\ & -{^R _0}{{\mathbb{D}_t}^{\alpha,\lambda}} u(t) = p(t)h\left(e^{\lambda t} u(t), {^R _0}{{\mathbb{D}_t}^ {\beta,\lambda}}u(t)\right), t\in(0,1),\\& {^R _0}{{\mathbb{D}_t}^ {\beta,\lambda}}u(0) = 0, \ \ {^R _0}{{\mathbb{D}_t}^ {\beta,\lambda}}u(1) = 0, \end{aligned}\right. \end{equation*} $
where $ h\in C([0, +\infty)\times[0, +\infty), [0, +\infty)) $ and $ p \in L^1([0, 1], (0, +\infty)) $. By applying reducing order technique and fixed point theorem, some new results of existence of the multiple positive solutions for the above equation were established. The interesting points were that the nonlinearity contained the lower order tempered fractional derivative and that the weight function can have infinite many singular points in $ [0, 1] $.
Citation: Xinguang Zhang, Yongsheng Jiang, Lishuang Li, Yonghong Wu, Benchawan Wiwatanapataphee. Multiple positive solutions for a singular tempered fractional equation with lower order tempered fractional derivative[J]. Electronic Research Archive, 2024, 32(3): 1998-2015. doi: 10.3934/era.2024091
Let $ \alpha\in (1, 2], \beta\in (0, 1) $ with $ \alpha-\beta > 1 $. This paper focused on the multiplicity of positive solutions for a singular tempered fractional boundary value problem
$ \begin{equation*} \left\{\begin{aligned}\ & -{^R _0}{{\mathbb{D}_t}^{\alpha,\lambda}} u(t) = p(t)h\left(e^{\lambda t} u(t), {^R _0}{{\mathbb{D}_t}^ {\beta,\lambda}}u(t)\right), t\in(0,1),\\& {^R _0}{{\mathbb{D}_t}^ {\beta,\lambda}}u(0) = 0, \ \ {^R _0}{{\mathbb{D}_t}^ {\beta,\lambda}}u(1) = 0, \end{aligned}\right. \end{equation*} $
where $ h\in C([0, +\infty)\times[0, +\infty), [0, +\infty)) $ and $ p \in L^1([0, 1], (0, +\infty)) $. By applying reducing order technique and fixed point theorem, some new results of existence of the multiple positive solutions for the above equation were established. The interesting points were that the nonlinearity contained the lower order tempered fractional derivative and that the weight function can have infinite many singular points in $ [0, 1] $.
[1] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations in North-Holland Mathematics Studies, Elsevier, 204 (2006). |
[2] | J. He, X. Zhang, L. Liu, Y. Wu, Y. Cui, A singular fractional Kelvin-Voigt model involving a nonlinear operator and their convergence properties, Boundary Value Probl., 2019 (2019), 112. https://doi.org/10.1186/s13661-019-1228-7 doi: 10.1186/s13661-019-1228-7 |
[3] | T. Ren, S. Li, X. Zhang, L. Liu, Maximum and minimum solutions for a nonlocal p-Laplacian fractional differential system from eco-economical processes, Boundary Value Probl., 2017 (2017), 118. https://doi.org/10.1186/s13661-017-0849-y doi: 10.1186/s13661-017-0849-y |
[4] | J. Wu, X. Zhang, L. Liu, Y. Wu, Y. Cui, Convergence analysis of iterative scheme and error estimation of positive solution for a fractional differential equation, Math. Modell. Anal., 23 (2018), 611–626. https://doi.org/10.3846/mma.2018.037 doi: 10.3846/mma.2018.037 |
[5] | X. Zhang, Y. Wu, L. Caccetta, Nonlocal fractional order differential equations with changing-sign singular perturbation, Appl. Math. Modell., 39 (2015), 6543–6552. https://doi.org/10.1016/j.apm.2015.02.005 doi: 10.1016/j.apm.2015.02.005 |
[6] | J. Wu, X. Zhang, L. Liu, Y. Wu, Y. Cui, The convergence analysis and error estimation for unique solution of a $p$-Laplacian fractional differential equation with singular decreasing nonlinearity, Boundary Value Probl., 2018 (2018), 82. https://doi.org/10.1186/s13661-018-1003-1 doi: 10.1186/s13661-018-1003-1 |
[7] | K. Owolabi, Riemann-Liouville fractional derivative and application to model chaotic differential equations, Progr. Fract. Differ. Appl., 4 (2018), 99–110. https://doi.org/10.18576/pfda/040204 doi: 10.18576/pfda/040204 |
[8] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006 |
[9] | X. Zhang, D. Kong, H. Tian, Y. Wu, B. Wiwatanapataphee, An upper-lower solution method for the eigenvalue problem of Hadamard-type singular fractional differential equation, Nonlinear Anal.-Model. Control, 27 (2022), 789–802. https://doi.org/10.15388/namc.2022.27.27491 doi: 10.15388/namc.2022.27.27491 |
[10] | X. Zhang, L. Yu, J. Jiang, Y. Wu, Y. Cui, Positive solutions for a weakly singular Hadamard-type fractional differential equation with changing-sign nonlinearity, J. Funct. Spaces, 2020 (2020), 5623589. https://doi.org/10.1155/2020/5623589 doi: 10.1155/2020/5623589 |
[11] | X. Zhang, P. Xu, Y. Wu, B. Wiwatanapataphe, The uniqueness and iterative properties of solutions for a general Hadamard-type singular fractional turbulent flow model, Nonlinear Anal.-Model. Control, 27 (2022), 428–444. https://doi.org/10.15388/namc.2022.27.25473 doi: 10.15388/namc.2022.27.25473 |
[12] | Á. Cartea, D. Negrete, Fluid limit of the continuous-time random walk with general Lévy jump distribution functions, Phys. Rev. E, 76 (2007), 041105. https://doi.org/10.1103/PhysRevE.76.041105 doi: 10.1103/PhysRevE.76.041105 |
[13] | F. Sabzikar, M. M. Meerschaert, J. Chen, Tempered fractional calculus, J. Comput. Phys., 293 (2015), 14–28. https://doi.org/10.1016/j.jcp.2014.04.024 |
[14] | B. Baeumera, M. M. Meerschaert, Tempered stable Lévy motion and transient super-diffusion, J. Comput. Appl. Math., 233 (2010), 2438–2448. https://doi.org/10.1016/j.cam.2009.10.027 doi: 10.1016/j.cam.2009.10.027 |
[15] | M. Meerschaert, Y. Zhang, B. Baeumer, Tempered anomalous diffusions in heterogeneous systems, Geophys. Res. Lett., 35 (2008), 17403–17407. https://doi.org/10.1029/2008GL034899 doi: 10.1029/2008GL034899 |
[16] | C. Li, W. Deng, High order schemes for the tempered fractional diffusion equations, Adv. Comput. Math., 42 (2016), 543–572. https://doi.org/10.1007/s10444-015-9434-z doi: 10.1007/s10444-015-9434-z |
[17] | G. Yuan, D. Ding, J. Duan, W. Lu, F. Wu, Total value adjustment of Bermudan option valuation under pure jump Lévy fluctuations, Chaos, 32 (2022), 023127. https://doi.org/10.1063/5.0072500 doi: 10.1063/5.0072500 |
[18] | X. Zhang, P. Chen, H. Tian, Y. Wu, Upper and lower solution method for a singular tempered fractional equation with a $p$-Laplacian operator, Fractal Fract., 7 (2023), 522. https://doi.org/10.3390/fractalfract7070522 doi: 10.3390/fractalfract7070522 |
[19] | X. Zhang, P. Chen, H. Tian, Y. Wu, The iterative properties for positive solutions of a tempered fractional equation, Fractal Fract., 7 (2023), 761. https://doi.org/10.3390/fractalfract7100761 doi: 10.3390/fractalfract7100761 |
[20] | D. Chang, X. Duong, J. Li, W. Wang, Q. Wu, An explicit formula of Cauchy-Szegö kernel for quaternionic Siegel upper half space and applications, Indiana Univ. Math. J., 70 (2021), 2451–2477. https://doi.org/10.1512/iumj.2021.70.8732 doi: 10.1512/iumj.2021.70.8732 |
[21] | M. Yang, Z. Fu, S. Liu, Analyticity and existence of the Keller-Segel-Navier-Stokes equations in critical Besov spaces, Adv. Nonlinear Stud., 18 (2018), 517–535. https://doi.org/10.1515/ans-2017-6046 doi: 10.1515/ans-2017-6046 |
[22] | M. Yang, Z. Fu, J. Sun, Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces, Sci. China Math., 60 (2017), 1837–1856. https://doi.org/10.1007/s11425-016-0490-y doi: 10.1007/s11425-016-0490-y |
[23] | J. Cao, D.Chang, Z. Fu, D. Yang, Real interpolation of weighted tent spaces, Appl. Anal., 59 (2016), 2415–2443. https://doi.org/10.1080/00036811.2015.1091924 doi: 10.1080/00036811.2015.1091924 |
[24] | D. Chang, Z. Fu, D. Yang, S. Yang, Real-variable characterizations of Musielak-Orlicz-Hardy spaces associated with Schrödinger operators on domains, Math. Methods Appl. Sci., 39 (2016), 533–569. https://doi.org/10.1002/mma.3501 doi: 10.1002/mma.3501 |
[25] | P. Chen, X. Duong, J. Li, Q. Wu, Compactness of Riesz transform commutator on stratified Lie groups, J. Funct. Anal., 277 (2019), 1639–1676. https://doi.org/10.1016/j.jfa.2019.05.008 doi: 10.1016/j.jfa.2019.05.008 |
[26] | S. Shi, Z. Fu, S. Lu, On the compactness of commutators of Hardy operators, Pac. J. Math., 307 (2020), 239–256. https://doi.org/10.2140/pjm.2020.307.239 doi: 10.2140/pjm.2020.307.239 |
[27] | X. Duong, M. Lacey, J. Li, B. Wick, Q. Wu, Commutators of Cauchy-Szego type integrals for domains in $C^n$ with minimal smoothness, Indiana Univ. Math. J., 70 (2021), 1505–1541. https://doi.org/10.48550/arXiv.1809.08335 doi: 10.48550/arXiv.1809.08335 |
[28] | Z. Fu, S. Gong, S. Lu, W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math., 27 (2015), 2825–2852. https://doi.org/10.1515/forum-2013-0064 doi: 10.1515/forum-2013-0064 |
[29] | L. Gu, Z. Zhang, Riemann boundary value problem for harmonic functions in Clifford analysis, Math. Nachr., 287 (2014), 1001–1012. https://doi.org/10.1002/mana.201100302 doi: 10.1002/mana.201100302 |
[30] | G. Wang, Z. Liu, L. Chen, Classification of solutions for an integral system with negative exponents, Complex Var. Elliptic Equations, 64 (2019), 204–222. https://doi.org/10.1155/2020/8392397 doi: 10.1155/2020/8392397 |
[31] | Y. Wu, W. Chen, On strong indefinite Schrödinger equations with non-periodic potential, J. Appl. Anal. Comput., 13 (2023), 1–10. https://doi.org/10.11948/20210036 doi: 10.11948/20210036 |
[32] | M. Yang, Z. Fu, S. Liu, Analyticity and existence of the Keller-Segel-Navier-Stokes equations in critical Besov spaces, Adv. Nonlinear Stud., 18 (2018), 517–535. https://doi.org/10.1515/ans-2017-6046 doi: 10.1515/ans-2017-6046 |
[33] | M. Yang, Z. Fu, J. Sun, Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces, J. Differ. Equations, 266 (2019), 5867–5894. https://doi.org/10.1016/j.jde.2018.10.050 doi: 10.1016/j.jde.2018.10.050 |
[34] | S. Yang, D. Chang, D. Yang, Z. Fu, Gradient estimates via rearrangements for solutions of some Schrödinger equations, Anal. Appl., 16 (2018), 339–361. https://doi.org/10.1142/S0219530517500142 doi: 10.1142/S0219530517500142 |
[35] | W. Chen, Z. Fu, L. Grafakos, Y. Wu, Fractional Fourier transforms on $L^p$ and applications, Appl. Comput. Harmon. Anal., 55 (2021), 71–96. https://doi.org/10.1016/j.acha.2021.04.004 doi: 10.1016/j.acha.2021.04.004 |
[36] | X. Zhang, J. Jiang, L. Liu, Y. Wu, Extremal solutions for a class of tempered fractional turbulent flow equations in a porous medium, Math. Probl. Eng., 2020 (2020), 2492193. https://doi.org/10.1155/2020/2492193 doi: 10.1155/2020/2492193 |
[37] | B. Dong, Z. Fu, J. Xu, Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations, Sci. China Math., 61 (2018), 1807–1824. https://doi.org/10.1007/s11425-017-9274-0 doi: 10.1007/s11425-017-9274-0 |
[38] | S. Shi, L. Zhang, G. Wang, Fractional non-linear regularity, potential and balayage, J. Geom. Anal., 32 (2022), 221. https://doi.org/10.1007/s12220-022-00956-6 doi: 10.1007/s12220-022-00956-6 |
[39] | X. Guo, Z.Fu, An initial and boundary value problem of fractional Jeffreys' fluid in a porous half spaces, Comput. Math. Appl., 78 (2019), 1801–1810. https://doi.org/10.1016/j.camwa.2015.11.020 doi: 10.1016/j.camwa.2015.11.020 |
[40] | S. Shi, Some notes on supersolutions of fractional $p$-Laplace equation, J. Math. Anal. Appl., 463 (2018), 10521074. https://doi.org/10.1016/j.jmaa.2018.03.064 doi: 10.1016/j.jmaa.2018.03.064 |
[41] | S. Shi, L. Zhang, Dual characterization of fractional capacity via solution of fractional $p$-Laplace equation, Math. Nachr., 2020 (2020), 2233–2247. https://doi.org/10.1002/mana.201800438 doi: 10.1002/mana.201800438 |
[42] | S. Shi, Z. Zhai, L. Zhang, Characterizations of the viscosity solution of a nonlocal and nonlinear equation induced by the fractional $p$-Laplace and the fractional $p$-convexity, Adv. Calc. Var., 17 (2023), 195–207. https://doi.org/10.1515/acv-2021-0110 doi: 10.1515/acv-2021-0110 |
[43] | H. Tang, G. Wang, Limiting weak type behavior for multilinear fractional integrals, Nonlinear Anal., 2020 (2020), 197. https://doi.org/10.1016/j.na.2020.111858 doi: 10.1016/j.na.2020.111858 |
[44] | H. Xu, L. Zhang, G. Wang, Some new inequalities and extremal solutions of a Caputo-Fabrizio fractional Bagley-Torvik differential equation, Fractal Fract., 6 (2022), 488. https://doi.org/10.3390/fractalfract6090488 doi: 10.3390/fractalfract6090488 |
[45] | X. Zhang, L. Yu, J. Jiang, Y. Wu, Y. Cui, Solutions for a singular Hadamard-type fractional differential equation by the spectral construct analysis, J. Funct. Spaces, 2020 (2020), 8392397. https://doi.org/10.1155/2020/8392397 doi: 10.1155/2020/8392397 |
[46] | Y. Yang, Q. Wu, S. Jhang, Q. Kang, Approximation theorems associated with multidimensional fractional fouried reansform and applications in Laplace and heat equations, Fractal. Fract., 6 (2022), 625. https://doi.org/10.3390/fractalfract6110625 doi: 10.3390/fractalfract6110625 |
[47] | D. J. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cone, Academic Press Inc, New York, 1988. |
[48] | N. A. Obeidat, M. S. Rawashdeh, Theories of tempered fractional calculus applied to tempered fractional Langevin and Vasicek equations, Math. Methods Appl. Sci., 46 (2023), 8582–8595. https://doi.org/10.1002/mma.9003 doi: 10.1002/mma.9003 |
[49] | Z. Qiu, X. Cao, Second-order numerical methods for the tempered fractional diffusion equations, Adv. Differ. Equations, 2019 (2019), 1–23. https://doi.org/10.1186/s13662-019-2417-5 doi: 10.1186/s13662-019-2417-5 |