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Abstract: Let a € (1,2],5 € (0, 1) with @ — 8 > 1. This paper focused on the multiplicity of positive
solutions for a singular tempered fractional boundary value problem

= 6D ut) = p(Oh (e"u(®), §D (), t € (0, 1),
§DAu(0) = 0, §DAu(1) =0,

where h € C([0, +o0) X [0, +0), [0, +00)) and p € L'([0, 1], (0, +c0)). By applying reducing order
technique and fixed point theorem, some new results of existence of the multiple positive solutions for
the above equation were established. The interesting points were that the nonlinearity contained the
lower order tempered fractional derivative and that the weight function can have infinite many singular
points in [0, 1].
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1. Introduction

In this paper, we consider the multiplicity of positive solutions for the following singular tempered
fractional equation with lower order tempered fractional derivative

(1.1)

— 6D, u(t) = p()h ("u(®), D u(®)), t € (0,1),
SDAu0) = 0, §DPu(1) =0,
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where @ € (1,2],8 € (0,1) with @ — 8 > 1, h € C([0, +o0) X [0, +00), [0, +0)), p € L'((0, 1), (0, +0)),
which implies that the weight function can have infinite many singular points in [0, 1].

The equation (1.1) contains a tempered fractional derivative tha’ﬁ, which is actually obtained by
multiplying an exponential factor in the Riemann-Liouville fractional derivative §2,°, i.e., the fol-
lowing relationship exists between tempered fractional derivative and Riemann-Liouville fractional
derivative

XD u(t) = e 8D (e u(n)). (1.2)

For the definition of the standard Riemann-Liouville fractional derivative and integral, we refer the
reader to [1-5].

As the optimization of the Riemann-Liouville fractional derivative, the tempered fractional deriva-
tive has many advantages, which not only overcomes the defect of using the power law of the clas-
sical fractional derivative in the mathematical sense, such as the Riemann-Liouville fractional deriva-
tives [6,7], the Caputo fractional derivatives [8], Hadamard fractional derivatives [9—11] etc, but also
brings many practical applications. It especially describes the anomalous diffusion phenomena in
Brownian motion with the semi-heavy tails or semi-long range dependence, such as the limits of ran-
dom walk with an exponentially tempered jump distribution [12, 13], transient super-diffusion [14],
anomalous diffusions in heterogeneous systems [15], exponentially tempering Lévy flights with both
the a-stable and Gaussian trends [16], and pure jump Lévy process with the fractional derivatives in
the risk management of financial derivatives traded over the counter [17].

In recent work [18], an upper and lower solutions technique has been employed to establish the
existence of positive solutions for a singular tempered fractional turbulent flow model in a porous
medium

D, (@, (ED/u(n))) = f(t,u(®). t € (0,1),

1 (1.3)
u(0) =0, §D 'u0) =0, u(l)= f e y(t)dt,
0

with @ € (0, 1], B8 € (1,2] and the nonlinearity f is decreasing in the second variable. In [19], in view
of the monotone iterative method, the iterative properties of positive solutions for a tempered fractional
equation

D u(r) = £(t, e"u(r), KD, u(r)), te€(0,1)

0=t ’ s )=t ’ ’ ’

! (1.4)
6D u(0) = 0, §D M u(l) = f e H 08D u(r)dt,
0

were established, where ¥ € (1,2], 6 € (0,1) with ¢ — 6 > 1, u is a positive constant, and f :
(0,1) X [0, +00) X [0, +00) — [0, +0c0) is a continuous and nondecreasing function with respect to the
two space variables. Recently, by using spaces theories [20-24], smooth theories [25-27], operator
method [28, 29], the method of moving sphere [30], critical point theories [31-34] and so on, some
other types of fractional equations was also studied [35—46].

However, when the nonlinearity contains lower order tempered fractional derivative, the results of
multiplicity of positive solutions have not yet been obtained. In order to fill this gap, by applying
the reducing order technique and fixed point theorem, some new results of existence of the multiple
positive solutions for the above equation are established in this paper. The interesting points are that
the nonlinearity contains the lower order tempered fractional derivative and the weight function can
have infinitely many singular points in [0, 1].
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2. Preliminaries and lemmas

In this section, we first recall definitions and some useful properties of the Riemann-Liouville frac-
tional derivative and integral.

Definition 2.1 ((2.1.1) on page 69 in [1]). The Riemann-Liouville fractional integral of order @ > 0 of
a function u : (0, +c0) — R is given by

I%u(f) = ﬁ fo (t — ) 'u(s)ds

provided that the righthand side is pointwise and defined on (0, +o0).

Definition 2.2 ((2.1.5) on page 70 in [1]). The Riemann-Liouville fractional derivative of order @ > 0
of a function u : (0, +c0) — R is given by

@ _ 1 i ! ' a1
Du(t) = T = a)( t) fo(t s) u(s)ds,

where n = [a] + 1, [a] denotes the greatest integer part of the number «, provided that the righthand
side is pointwise and defined on (0, +c0).

The following properties of the Riemann-Liouville fractional derivative and integral can be found
on pages 73-75 (Lemmas 2.3-2.5) in [1].

Lemma 2.1. Suppose u(t) € C[0, 11N L'[0,1] and @ > B> 0. Let n = [a] + 1, then

(1)
8D u(t) = u@) + et + oyt + -+ 0yt 2.1)
wherec; e R,i=1,2,3,...,n.
(i)

I°IPu(t) = IPu(t), 29L1%u@t) = I°Pu(t), RDPPu(t) = u@).

Lemma 2.2. Let p € L'([0, 1], (0, +0)), then the singular linear tempered fractional equation

— XD, Pu(t) = p(),
oD u(t) = p(t) 2.2)
u(0)=0, u(l) =0,
has a unique positive solution u(t) provided that 1 < a — 8 < 2, which can be expressed by
1
u = [ Haspoxs, 23)
0
where o o o
! (l—slz( ﬁ—)(t—s) e Ve 0<s<t<I;
a —
H(t,s) = b1 _ gyrpe] 2.4)

e e, 0<tr<s<l.

I'e-pB)
is the Green function of (2.2).
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Proof. In fact, it follows from 1 < @ — 8 < 2, (1.2) and (2.1) that

f
eMu(t) = — f(t—s)a B p(s)ds + byt P + bt* P2 1 € [0, 1].
0

1
I -pB)
Since u(0) = 0 and u(1) = 0, we have b, = 0 and

=g [0t
Thus
1) = p—— o) [ fo 1(1 = 5)" P e e p(s)dst™ P! f (t = 9" le™Me  p(s)ds
T p) f, | (PN = 9) P e Ve p(s)ds

1
:f H(t, s)p(s)ds, te[0,1].
0

The following Lemma has been proven (see Lemma 2.3 of [6] or Lemma 3 of [4]).

Lemma 2.3. Suppose a € (1,2],8 € (0,1) with @ — 8 > 1, then H(t, s) is a nonnegative continuous
function in [0, 1] X [0, 1] satisfying, for any (¢, s) € [0, 1] x [0, 1],

ta—ﬂ—l(l _ t)e—/lt el . s ta—,B—l(l _ t)e—/lt (1 _ S)a—ﬂ—lse/ls
=5 (I-1) se™ < H(t,s) < T —p) or( Ta=p) )

(2.5)

Suppose @ € (1,2],8 € (0,1) with « — 8 > 1. In order to use the reducing order technique, we
introduce the following integral transformation

u(t) = e "IP(ey(1), tel0,1] (2.6)

and then consider the following reducing order problem

Ry a—B.A _ By At
{ oD y(®) = p(OR(I (e y(1)), y(1)), t € (0, 1), 2.7

y0)=0, y(1)=0

Lemma 2.4. Suppose a € (1,2],8 € (0,1) with « — 8 > 1. The reducing order problem (2.7) is
equivalent to the singular tempered fractional equation (1.1). In particular, if y is a positive solution of
the problem (2.7), then u(t) = e 'IP(eVy(t)) is a positive solution of the singular tempered fractional
equation (1.1).
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Proof. We first suppose that u is a positive solution of the singular tempered fractional equation (1.1).
Let
u(t) = e " 1Pey(1)).

Noticing that @ € (1,2],5 € (0,1) witha — 8 > 1, letn = [a] + 1, i.e., n is the smallest integer greater
than or equal to «, then it follows from (1.2) and Lemma 2.1 that

n

EDu(e) = D ) = e e ute)

dr"
ol ﬁ n—a ;1B At _ ﬁ n—a+B; At (2.8)
= IS Y 0) = oI e (1)
= 8D P Y1) = §D Py,
and
DA ) = e DP (e u(r) = e "§DL P (e y (1)) = y(D). (2.9)
By (2.8) and (2.9), we have

= §D P = =§D, @) = ph (e u(o), §DHu®) = pih (Pey1), y(®) 1 € O, 1),
(0) = §DAu(0) =0, y(1) = {DAu(1) = 0,

thus, y solves the equation (2.7).

Conversely, suppose that y is any solution of the reducing order problem (2.7), then we have

— 8D, Py(t) = p(h(FP(eMy (1)), y(1)), 1€ (0,1),
y(0) =0, y(1)=0.

Make integral transformation (2.6), similar to (2.8) and (2.9), we have
0D u() = =D Py(e), (D) = y(@).
Substituting the above formulas into (2.7), we get

0D, u(@) = ph (IP(ey1), ) = ph (e"u(d). §DHun), 0 <1 <1,

and
§DAu(0) = 0, §D/u(l) =0,

which implies that u(f) = e~ I?(e''y(t)) solves the singular tempered fractional equation (1.1).

Suppose E = C([0, 1]; R) with the norm
llyll = max |y(2)].

te[0,1]

Define a cone of E and an operator 7', respectively:
P={yeE:y@®) =1 -ne I,
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and
1
(Ty)) = f H(t, 5)p(s)h(IP(e"y(s), y(5))ds. (2.10)
0

In order to obtain the existence of a positive solution of the Eq (1.1), Lemma 2.4 indicates that we only
consider the fixed points of the operator 7.

Now, we list the following hypotheses, which are used in the rest of this paper.
(C1) h € C([0, +00) X [0, +0), [0, +00)) and p € L'((0, 1), (0, +o0)).
(C2) There is a constant n > 0 such that forany 0 < u + v < (1 + F(ﬂ+1))

h(u,v) < un,

ne/l 1
u—[r(a_ = fo p(s)ds]

(C3) There is a constant p > 0 such that for any
a-1
F(a—,B)(}T) + 0" Mlp<ut+v<|l+ -
T(a) 4 ¢ \PEtTYEU Tt )P

h(u,v) > op,

where |

it implies

where
3

3 -1
f p(s)ds} .

Lemma 2.5. Assume a € (1,2],8 € (0, 1) witha — 8 > 1 and (C1) holds, then the operator T : P — P
is completely continuous.

o= 8(2_'3€%AF(CZ -B)

Proof. First by (C1), T is continuous on [0, 1]. For any y € P, there exists a constant M > 0 such that

llyll < M, then
Lt — s lety(s) Met
B A _
0 < IP(e¥y(s)) = j; @ ds < oS 2.11)

Let

N = max h(u,v),

()€l0, 45 1x[0.M]

then by (2.11), for any y € P, we have

1
ITyll = max f H(t, 5)p()h(FP(e"y(5)), y(s)dss
t€l0, 0

: 1 - a—B-1 ¢ ,As
<f( »(?) IB)se PRIy (5), y(5))ds

_ J\ap-1
Nf d Fz())z se” p(s)ds

< F(a—ﬁ)fo p(s)ds < +oo,

Electronic Research Archive Volume 32, Issue 3, 1998-2015.
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which implies that 7 : P — E is well-defined. In addition, by (2.5) and (2.12), we have

a—p-1
(Ty)(l)>f - S) < P(S)h(lﬁ(ff”y(S)),y(S))dS
x 771 - “’> ||Ty||t P = e,

which implies that 7(P) c P.
In the end, by using the standard arguments and combining the Ascoli-Arzela theorem, we know
T(P) c P is completely continuous.

Our proof of main results depends on the fixed point theorem of cone expansion and compression
(see Theorem 2.3.3 on page 93 of [47]).

Lemma 2.6. [47] Suppose P is a cone of real Banach space E, the bounded open subsets €,,£) of
E satisfy 6 € Q, Q cQy LetT : PN (Qz \ Q) — P be a completely continuous operator such that
either

(DTz < lzll,z € PN Oy and Tzl = |lzll, z € PN Oy, or

(2) Tzl = llzll,z € PN IQy and ||Tz|| < |Izll,z € P N Iy;
then T has a fixed point in P N (Q\ Q).

3. Main results

For the convenience of the proof, we first introduce the following notations whenever the limits

exist or not: ) \
ho = lim 2V gy M)

utv—=0 Yy + v u+v—o+o0 Y 4+ V

and then state our main results as follows.

Theorem 3.1. Assume that (C1) and (C2) hold, and
hy = +00, hy, = +00,

then the tempered fractional equation (1.1) has at least two positive solutions u,, u,; moreover, there
exist four constants Ay, By, A, B, > 0 such that

At le™ < u() < Bie"™) At le™ < uy(f) < Bre.
Proof. It follows from hy = +co that there exist O < m < n and a sufficiently large constant
32" ﬁe/ll“(a B)
f p(s)ds

such that forany O < u +v < (1 + #il))m,

h(u,v) > N(u +v).

Electronic Research Archive Volume 32, Issue 3, 1998-2015.
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Take Q,, = {y € E : ||yl| < m}, and 0Q,, = {y € E : ||y|| = m}, then for any y € P N 0Q,,, one has

Lt —s)P! e‘mt? e‘m
B As _ As
FP(e™y(s)) = ) —F(B) e”y(s)ds < TG+ D) < TG+1) 3.1
then N
B, s €
FF(e™y(s)) +y(s) < (1 + rG+ 1))m. (3.2)
Thus,

1 LN
Tyl = (Ty) (—) = fo H (5, s) PP (eVy(s)), y(s))ds

, Ze 2- (1+,Be 7/1 f (1 )(y —B- lse/lsp(s)N(Iﬁ(e/l&y(s)) +y(S))

I'a -

2—a+,Be—§/l P
> f (1 =) se“ p(s)Ny(s)ds

I'a -

—(x+ﬂe—§/l (33)
S f (1 — 5)* P Lse¥ p(s)Ny(s)ds

I'a -

> (1 - 5)* P se® p(s)dslyll
sa—ﬁe%ﬂr(a -B) f

> d > |yl
2 et p) J, POz
So, for any y € P N 6Q,,, we have ||Ty|| > ||y]|.

Next, let Q, = {y e E : ||yll < n} and 90Q, = {y € E : ||y|| = n}, then it follows from (3.2) and (C2)

that for any y € P N 9Q,,, one has

1
(Ty)(®) = f H(t, $)p(s)h(FP(e"'y(s), y(s))ds

a—F-1
f (1 S) i P(S)h(lﬂ (e"'y(s), y(s))ds
(3.4)

—ﬁ)fo p(sW’ﬁ(e”’y(s),y(s))ds

1 1
< F(,Lclyniﬁ)‘fo p(s)ds < n.

Therefore for any y € P N 0Q,,, we have ||Ty|| < ||yl
On the other hand, it follows from /4., = +co that there exists M > 0 and

3

-1
n>32Pe'T(a - pB) ( f p(s)ds)

such that for any u + v > M, we have

h(u,v) = n(u + v).
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Take R = n + 4*Pei'M and let Qp = {y € E : [yl < R} and 0Qg = {y € E : |ly|| = R}, then for any
y € PN 9O and [, 2], one has

n\* 1\*? ;
y(t) > (Z) e Myl > (Z) e (n + 47 PeiMY) > M.

Thus, for any y € P N 0Q%, we have

1 A
ITyll > (Ty) (5) = f H (5, s) p()HhIP(e¥y(s)), y(s))ds
0

2—<x+ﬁe—% %

Ta—p J, 497 s piom (P(e"y(s)) + y(s)) ds

2 a+p 11

> ¢ f (1 = )" se p(s)ny(s)ds

oo 33
f (1 = 5" se™ p(s)ny(s)ds

Ui f a-B-1_ s
> (1-5) se”* p(s)dslyll
gbei'T(a - B) Jy

3

n 4
> d > |lyl].
- 32&—ﬂe/lr(a, _ﬁ) j; p(S) S||)’|| = ||)7||

Therefore, for any y € P N dQg, we have ||Ty|| < |[yl|.

According to Lemma 2.6, T has two fixed points y; € P N (ﬁm\Qn) and y, € PN (ﬁR\Qn) with
m < ||y1]l € n < |[|y2]l £ R. Thus, it follows from Lemma 2.4 that the tempered fractional equation (1.1)
has at least two positive solutions satisfying

mIl(a — B)t* e Y net1-1
<u(f) = e Pty (1) € ———,
fa SU0 = O < s
and
nr(a, _ﬁ)ta—le—/lt y Re/l(l—t)
< u-(f) = Betyy (1)) <
@) Su(t) = e TP (e Y1) < TG+ D)

Theorem 3.2. Assume that (C1) and (C3) hold and
hy=0,h, =0,

then the tempered fractional equation (1.1) has at least two positive solutions uz, uy; moreover, there
exist four constants As, Bz, A4, By > 0 such that

A3t e ™ < us(r) < Bie™ '), Aut® e < uy(r) < By,
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Proof. First, notice that iy = 0, for any € > 0. Let us select 0 < «k < p such that forany 0 < u +v <

(1 + F(ﬁ+1))

h(u,v) < e(u +v).

Ee/l e/l 1
e G ANCEE

Now, let Q, = {y € E : ||yl < «} and 0Q, = {y € E : ||y|| = «}, then for any y € P N 9QQ,, the same as
(3.2), we also have

Choose € such that

A
PP(e¥y(s)) + y(s) < (1 + F(Be+ 1)) K, (3.6)

which implies that for any y € P N 0€,, the following estimation is valid:

h(IP(ey(5)), ¥(5) < (IP(e"'y(s)) + y(5)).

Consequently, for any y € P N 9dQ,, one gets

1
(Ty)?) = f H(t, 5)p()h(FP(e"y(5)), y(s)dss

_ oja-B-1
f(l s) se's D(P(eVy(5)), y(s))ds

_,8) f P(S)h(lﬁ(e/lty(s)),y(s))ds
: (3.7

1
-B) ﬁ p(s)e(l'g(e/hy(S)) + y(s))ds

e’ ! et
< F(a—ﬁ)‘fo p(s)e(l + TG+ 1))de

eet e’ !
< Ma—5) (1 + TG+ 1))]; p(s)dsk < k.

(3.7) implies that ||Ty|| < [[yll, y € PN L.
Next, let Q, = {y € E : |lyll < p}, and 0Q, = {y € E : ||yl = p}, then for any y € P N 0€2,, we have

— 1 _ a—1
(t S)ﬁ “ﬁlﬂsy(s)ds M_ (3.8)

o TB [(a)

Thus, it follows from (3.8) that for any y € P N 0, and [}L, %], one has

R0 S NS ST

P57 y(s) =

(@) 1 (@) "2 59)

— B grB e
= IP(e y(s))+y(t)S(1+r(’8+1))p.

Electronic Research Archive Volume 32, Issue 3, 1998-2015.
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So, for any y € P N 9L, , we have
1 LN 50 1s
Tyl > (Ty) =)= H 508 PRI (e y(s)), y(s5))ds
0

2—a+ﬁe—§/l
> ———— f (1 = )" Lse p(s)h(IP(e¥y(5)), y(5))d's
I'a -

a+ﬁ 5/1
¢ f (1 = )7 se" p(h(PP (e y(s)). y(5))ds (3.10)

2 a+ﬂ€ v—B-1 . s o %
> ———— (1 $)* P se” p(s)opds > ] p(s)dsp
82 Bei'l(a — B) J!

> ||y||,

which implies that [|7y[| > ||y|| holds and y € P N 9€2,,.
On the other hand, since A, = 0, for any € > 0, there exists M* > 0 such that for any u + v > M*

h(u,v) < e(u +v).

For the above € > 0, choose a sufficiently small one such that

eet ol 1
C(a - p) (1+F(ﬂ+1))fo p(s)ds < 1,

A 1
e maXos e hv) [ p()ds
R*:max{r( P i fO o+ M 3.

- F(Zejﬁ) ( F(ﬁ+1))f0 p(s)ds

Next, let Qg- = {y € E : ||y|| < R*}, and 0Qk- = {y € E : ||y|| = R*}, then for any y € P N 0€2:, one
has

and take

5 it ( _S)a—ﬁ lse/ls 8 a0
(Ty)r) = f H(t, s)p(s)h(I"(e" y(s), y(s))ds < f ~5) PRI (e7y(s), y(5))ds
e/l

- h(IB(eMy(s), d
- Ia-p) {'£<1ﬁ(e"}’(s)+y(s)sM* p(h(I"(e7y(s), y(s))ds

an P9, ¥ ()
M*<IB(etty(s)+y(s)< 1+l‘(ﬁ+]))R
/1

1
= T@-p) {o<u+3§ h(u, v) fo p(s)ds

p(s)e(IP(ey(s) + y(s))ds}

(3.11)

«fl\:[ <IP(ely(s)+y (s)< 1+ r(ﬁil) )R
/l

1 1
Iﬂ(a -B) {0<31§§M hiu, v) + 6(1 + (ﬁe+ 1))R*)f0 p(s)ds < R".

Therefore, for any y € P N 0Q%, we have ||Ty|| > ||yl

Electronic Research Archive Volume 32, Issue 3, 1998-2015.
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According to Lemma 2.6, T has two fixed points y; € P N (ﬁp\QK) and y, € PN (ﬁR*\Qp) with
k < |lysll € p < |lysll £ R*. Thus, it follows from Lemma 2.4 that the tempered fractional equation (1.1)
has at least two positive solutions satisfying

KF(oz _ ﬁ)ta—le—/lt L pe/l(l—t)
< us(t) = e P (eMys(1)) < ,
T(@) <uz(t) =e (e™y3(0) < T@+1)
and 1, -t A1-1)
pl'(a-pPt* e Aty e Re™'™
<uy(t) = I 1)) < .
() Suy(t) =e (e"ys(n) < T@+1)

4. Examples

The tempered fractional diffusion equation has many important applications, including the tempered
fractional Langevin and Vasicek differential equations [48] and the space-time tempered fractional
diffusion-wave equation [49]. The new theorems established in the present paper are very useful in
the area of tempered fractional calculus. We can find the multiple positive solutions for the singular
tempered fractional equations with the lower order tempered fractional derivatives using the proposed
theorems.

Let us apply the main results to solve two singular tempered fractional equations with lower order
tempered fractional derivative.

Exampled.l. Leta = 3, B=1, 1=3, and

(u+v)%, 0<u+v<47,
h(u,V) = (l/t + V)Z

473

, u+v>47.

We consider the multiplicity of positive solutions for the following singular tempered fractional equa-
tion with the lower order tempered fractional derivative:

1
s 1 2 1
D ERTOE ‘5 -~ t‘ h(e3’u(t),RDt3’3u(t)),O <t<l, @D
D, 3u(0) = 0, *D,3%u(1) = 0.

Conclusion. The singular tempered fractional equation (4.1) has at least two positive solutions u;, u,:
moreover, there exist four constants A, By, A,, B, > 0 such that

2 2
Ae <u(t) < Bi?), Aytie™ < up(t) < Bre?U .

Proof. Here,
L
Lo (”605)2, 0<u+v<d47,
p<t>=‘§—t = 60
——, u+v>47.
600 x 472
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Clearly, (C1) holds and

- h(u,v) . hu,v)
/’l() = lim = 400, hoo = lim = 400
u+v—0 U + v u+v—+oo Y + VY

In the following, we verify the condition (C2). In fact, take n = 2, then

ne' ! B 263 !
- dsl =12
a [F(a—ﬁ)fo e S] [r(;i)fo

and forany 0 <u+v < (1 + #11))” = 2(1 + Fi)) = 46.9853, we have
3

o
ds| = 0.0079,

)

2

1

472
— =0.0114 =0.01
h(u,v) < 00 0.0 < un = 0.0158,

which implies that (C2) holds.
Consequently, it follows from Theorem 3.1 that the tempered fractional equation (4.1) has at least
two positive solutions uy, u,; moreover, there exist four constants Ay, By, A, B, > 0 such that

2 2
Ae <u(t) < Bi?0,) Aytie™ < up(t) < By,

Example 4.2. Let a = %, B

1, A=3,and

1
100\/§(u+v)2, 0Su+v§§,
1

50(u+v)%, u+v> 5

h(u,v) =

We consider the multiplicity of positive solutions for the following singular tempered fractional equa-
tion with the lower order tempered fractional derivative

1

: 1
—RD,33u(r) = ‘5 - t‘ h(eu(), D u().0 < 1 < 1,

RD,33u(0) = 0, D3 u(1) = 0.

(4.2)

Conclusion. The tempered fractional equation (4.2) has at least two positive solutions uy, u,; moreover,
there exist four constants A;, B, A,, B, > 0 such that

2 2
Aitie™ <u () < B1®, Ayt3e™ < up(t) < Bre?U .

Proof. Here
1

100\/§(u+v)2, O<u+v< 5

1
: "L h(uwv) =

p(t)=‘l—t

| 1
S0(u+v)i, u+v> 5
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Clearly, (C1) holds and

h h
hy= lim Y 0 po = fim MY

u+v—>0 Y + v utv—+oo | + VY

0.

Take p = 2, and we have

3

—1 3
A 4 3[4 1
j‘; p(S)dS} = 83e41"(§) [fi = ‘5 - S

red ()
Iﬂ(%)

1

1 -1
0= 8°Pet I (a -B) i ds] = 15.1238.

For any

0.8184 =2 -

3

13 9 63
+|=] e*|<u+v<2 1+_F = 46.9844,

one has
h(u,v) > 50 x 0.8184% =45.232 > op = 30.2476,

which implies that (C3) holds.
Consequently, it follows from Theorem 3.2 that the tempered fractional equation (4.2) has at least
two positive solutions uy, u,; moreover, there exist four constants Ay, By, A, B, > 0 such that

2 2
Ae™ <u(t) < B, Axtie™ <up(r) < Boe™! .

5. Conclusions

This work studies the multiplicity of positive solutions for a class of singular tempered fractional
equations with the lower order tempered fractional derivative. By applying reducing order technique
and fixed point theorem, some new results of existence of the multiple positive solutions for the equa-
tion are established. The interesting points are the nonlinearity contains the lower order tempered
fractional derivative and the weight function can have infinitely many singular points in [0, 1]. How-
ever, in this study, the conditions a € (1,2],8 € (0, 1) with @ — 8 > 1 are required; if 0 <o -8 < 1 or
h has singularity at space variables, these interesting problems are still worth future studying.
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