Research article Special Issues

Applying modified golden jackal optimization to intrusion detection for Software-Defined Networking

  • Received: 14 November 2023 Revised: 12 December 2023 Accepted: 19 December 2023 Published: 28 December 2023
  • As a meta-heuristic algorithm, the Golden Jackal Optimization (GJO) algorithm has been widely used in traditional network intrusion detection due to its ease of use and high efficiency. This paper aims to extend its application to the emerging field of Software-Defined Networking (SDN), which is a new network architecture. To adapt the GJO for SDN intrusion detection, a modified Golden Jackal Optimization (mGJO) is proposed to enhance its performance with the use of two strategies. First, an Elite Dynamic Opposite Learning strategy operates during each iteration to find solutions opposite to the current global optimal solutions, which increases population diversity. Second, an updating strategy based on the Golden Sine II Algorithm is utilized in the exploitation phase to update the position information of the golden jackal pairs, which accelerates the search for the best feature subset indexes. To validate the feasibility of the mGJO algorithm, this paper first assesses its optimization capability using benchmark test functions. Then, four UCI datasets and the NSL-KDD dataset are used to test the classification capability of the mGJO algorithm and its application in traditional network intrusion detection. Furthermore, the InSDN dataset is used to validate the feasibility of the mGJO algorithm for SDN intrusion detection. The experimental results show that, when the mGJO algorithm is applied to SDN for intrusion detection, the various indexes of classification and the selection of feature subsets achieve better results.

    Citation: Feng Qiu, Hui Xu, Fukui Li. Applying modified golden jackal optimization to intrusion detection for Software-Defined Networking[J]. Electronic Research Archive, 2024, 32(1): 418-444. doi: 10.3934/era.2024021

    Related Papers:

  • As a meta-heuristic algorithm, the Golden Jackal Optimization (GJO) algorithm has been widely used in traditional network intrusion detection due to its ease of use and high efficiency. This paper aims to extend its application to the emerging field of Software-Defined Networking (SDN), which is a new network architecture. To adapt the GJO for SDN intrusion detection, a modified Golden Jackal Optimization (mGJO) is proposed to enhance its performance with the use of two strategies. First, an Elite Dynamic Opposite Learning strategy operates during each iteration to find solutions opposite to the current global optimal solutions, which increases population diversity. Second, an updating strategy based on the Golden Sine II Algorithm is utilized in the exploitation phase to update the position information of the golden jackal pairs, which accelerates the search for the best feature subset indexes. To validate the feasibility of the mGJO algorithm, this paper first assesses its optimization capability using benchmark test functions. Then, four UCI datasets and the NSL-KDD dataset are used to test the classification capability of the mGJO algorithm and its application in traditional network intrusion detection. Furthermore, the InSDN dataset is used to validate the feasibility of the mGJO algorithm for SDN intrusion detection. The experimental results show that, when the mGJO algorithm is applied to SDN for intrusion detection, the various indexes of classification and the selection of feature subsets achieve better results.



    加载中


    [1] A. Savaliya, R. H. Jhaveri, Q. Xin, S. Alqithami, S. Ramani, T. A. Ahanger, Securing industrial communication with software-defined networking, Math. Biosci. Eng., 18 (2021), 8298–8314. https://doi.org/10.3934/mbe.2021411 doi: 10.3934/mbe.2021411
    [2] N. T. Hoang, H. N. Nguyen, H. A. Tran, S. Souihi, A novel adaptive east–west interface for a heterogeneous and distributed SDN network, Electronics, 11 (2022), 975. https://doi.org/10.3390/electronics11070975 doi: 10.3390/electronics11070975
    [3] P. Wu, Y. Shang, S. Bai, L. Cheng, H. Tang, A lightweight path consistency verification based on INT in SDN, Math. Biosci. Eng., 20 (2023), 19468–19484. https://doi.org/10.3934/mbe.2023862 doi: 10.3934/mbe.2023862
    [4] A. Yazdinejadna, R. M. Parizi, A. Dehghantanha, M. S. Khan, A kangaroo-based intrusion detection system on software-defined networks, Comput. Networks, 184 (2021), 107688. https://doi.org/10.1016/j.comnet.2020.107688 doi: 10.1016/j.comnet.2020.107688
    [5] S. Badotra, S. Tanwar, S. Bharany, A. U. Rehman, E. T. Eldin, N. A. Ghamry, et al., A DDoS vulnerability analysis system against distributed SDN controllers in a cloud computing environment, Electronics, 11 (2022), 3120. https://doi.org/10.3390/electronics11193120 doi: 10.3390/electronics11193120
    [6] M. W. Nadeem, H. G. Goh, V. Ponnusamy, Y. Aun, DDoS detection in SDN using machine learning techniques, Comput. Mater. Continua, 71 (2022), 771–789. https://doi.org/10.32604/cmc.2022.021669 doi: 10.32604/cmc.2022.021669
    [7] J. Wang, Y. Liu, H. Feng, IFACNN: Efficient DDoS attack detection based on improved firefly algorithm to optimize Convolutional Neural Networks, Math. Biosci. Eng., 19 (2022), 1280–1303. https://doi.org/10.3934/mbe.2022059 doi: 10.3934/mbe.2022059
    [8] F. Zhang, Z. Gao, K. Niu, Network intrusion detection model based on BiGRU system (in Chinese), Comput. Technol. Dev., 33 (2023), 144–149. https://doi.org/10.3969/j.issn.1673-629X.2023.01.022 doi: 10.3969/j.issn.1673-629X.2023.01.022
    [9] J. Liu, Y. Yan, Artificial fish feature selection network intrusion detection system (in Chinese), J. Xidian Univ., 50 (2023), 132–138. https://doi.org/10.19665/j.issn1001-2400.2023.04.013 doi: 10.19665/j.issn1001-2400.2023.04.013
    [10] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, et al., Feature selection: A data perspective, ACM Comput. Surv., 50 (2017), 1–45. https://doi.org/10.1145/3136625 doi: 10.1145/3136625
    [11] O. Friha, M. Ferrag, S. Lei, M. Leandros, C. Kim-Kwang, M. Nafaa, FELIDS: Federated learning-based intrusion detection system for agricultural Internet of Things, J. Parallel Distrib. Comput., 165 (2022), 17–31. https://doi.org/10.1016/j.jpdc.2022.03.003 doi: 10.1016/j.jpdc.2022.03.003
    [12] R. A. Elsayed, R. A. Hamada, M. I. Abdalla, S. A. Elsaid, Securing IoT and SDN systems using deep-learning based automatic intrusion detection, Ain Shams Eng. J., 14 (2023), 102211. https://doi.org/10.1016/j.asej.2023.102211 doi: 10.1016/j.asej.2023.102211
    [13] N. M. Yungaicela-Naula, C. V. Rosales, J. A. Perez, E. Jacob, C. M. Cagnazzo, Physical assessment of an SDN-based security framework for DDoS attack mitigation: Introducing the SDN-SlowRate-DDoS dataset, IEEE Access, 11 (2023), 46820–46831. https://doi.org/10.1109/ACCESS.2023.3274577 doi: 10.1109/ACCESS.2023.3274577
    [14] G. O. Anyanwu, C. I. Nwakanma, J. M. Lee, D. S. Kim, Optimization of RBF-SVM kernel using grid search algorithm for DDoS attack detection in SDN-based VANET, IEEE Internet Things J., 10 (2022), 8477–8490. https://doi.org/10.1109/JIOT.2022.3199712 doi: 10.1109/JIOT.2022.3199712
    [15] Y. Gu, K. Li, Z. Guo, Y. Wang, Semi-supervised k-means DDoS detection method using hybrid feature selection algorithm, IEEE Access, 7 (2019), 64351–64365. https://doi.org/10.1109/ACCESS.2019.2917532 doi: 10.1109/ACCESS.2019.2917532
    [16] N. Chopra, M. Mohsin Ansari, Golden jackal optimization: A novel nature-inspired optimizer for engineering applications, Expert Syst. Appl., 198 (2022), 116924. https://doi.org/10.1016/j.eswa.2022.116924 doi: 10.1016/j.eswa.2022.116924
    [17] E. Ghandourah, Y. S. Prasanna, A. H. Elsheikh, E. B. Moustafa, M. Fujii, S. S. Deshmukh, Performance prediction of aluminum and polycarbonate solar stills with air cavity using an optimized neural network model by golden jackal optimizer, Case Stud. Therm. Eng., 47 (2023), 103055. https://doi.org/10.1016/j.csite.2023.103055 doi: 10.1016/j.csite.2023.103055
    [18] I. R. Najjar, A. M. Sadoun, A. Fathy, A. W. Abdallah, M. A. Elaziz, M. Elmahdy, Prediction of tribological properties of alumina-coated, silver-reinforced copper nanocomposites using long short-term model combined with golden jackal optimization, Lubricants, 10 (2022), 277. https://doi.org/10.3390/lubricants10110277 doi: 10.3390/lubricants10110277
    [19] R. M. Devi, M. Premkumar, G. Kiruthiga, R. Sowmya, IGJO: An improved golden jackel optimization algorithm using local escaping operator for feature selection problems, Neural Process. Lett., 14 (2023), 1–89. https://doi.org/10.1007/s11063-023-11146-y doi: 10.1007/s11063-023-11146-y
    [20] H. Das, S. Prajapati, M. K. Gourisaria, R. M. Pattanayak, A. Alameen, M. Kolhar, Feature selection using golden jackal optimization for software fault prediction, Mathematics, 11 (2023), 2438. https://doi.org/10.3390/math11112438 doi: 10.3390/math11112438
    [21] F. Y. Arini, K. Sunat, C. Soomlek, Golden jackal optimization with joint opposite selection: An enhanced nature-inspired optimization algorithm for solving optimization problems, IEEE Access, 10 (2022), 128800–128823. https://doi.org/10.1109/ACCESS.2022.3227510 doi: 10.1109/ACCESS.2022.3227510
    [22] Z. Lu, M. Tian, J. Zhou, X. Liu, Enhancing sensor duty cycle in environmental wireless sensor networks using Quantum Evolutionary Golden Jackal Optimization Algorithm, Math. Biosci. Eng., 20 (2023), 12298–12319. https://doi.org/10.3934/mbe.2023547 doi: 10.3934/mbe.2023547
    [23] H. Xu, K. Przystupa, C. Fang, A. Marciniak, O. Kochan, M. Beshley, A combination strategy of feature selection based on an integrated optimization algorithm and weighted k-nearest neighbor to improve the performance of network intrusion detection, Electronics, 9 (2020), 1206. https://doi.org/10.3390/electronics9081206 doi: 10.3390/electronics9081206
    [24] H. Xu, Y. Hu, W. Cao, L. Han, An improved jump spider optimization for network traffic identification feature selection, Comput. Mater. Continua, 16 (2023), 3239–3255. https://doi.org/10.32604/cmc.2023.039227 doi: 10.32604/cmc.2023.039227
    [25] H. Xu, X. Chai, H. Liu, A multi-controller placement strategy for hierarchical management of software-defined networking, Symmetry, 15 (2023), 1520. https://doi.org/10.3390/sym15081520 doi: 10.3390/sym15081520
    [26] H. Xu, Y. Lu, Q. Guo, Application of improved butterfly optimization algorithm combined with black widow optimization in feature selection of network intrusion detection, Electronics, 11 (2022), 3531. https://doi.org/10.3390/electronics11213531 doi: 10.3390/electronics11213531
    [27] P. Sun, H. Liu, Y. Zhang, Q. Meng, L. Tu, J. Zhao, An improved atom search optimization with dynamic opposite learning and heterogeneous comprehensive learning, Appl. Soft Comput., 103 (2021), 107140. https://doi.org/10.1016/j.asoc.2021.107140 doi: 10.1016/j.asoc.2021.107140
    [28] H. Jia, Q. Liu, Y. Liu, S. Wang, D. Wu, Hybrid aquila and harris hawks optimization algorithm with dynamic opposition-based learning (in Chinese), J. Intell. Syst., 18 (2023), 104–116. https://doi.org/10.11992/tis.202108031 doi: 10.11992/tis.202108031
    [29] Y. Xu, Z. Yang, X. Li, H. Kang, X. Yang, Dynamic opposite learning enhanced teaching–learning-based optimization, Knowl. Based Syst., 188 (2020), 104966. https://doi.org/10.1016/j.knosys.2019.104966 doi: 10.1016/j.knosys.2019.104966
    [30] Y. Lai, H. Chen, F. Gu, A multitask optimization algorithm based on elite individual transfer, Math. Biosci. Eng., 20 (2023), 8261–8278. https://doi.org/10.3934/mbe.2023360 doi: 10.3934/mbe.2023360
    [31] E. Tanyildizi, A novel optimization method for solving constrained and unconstrained problems: Modified Golden Sine Algorithm, Turk. J. Electr. Eng. Comput. Sci., 26 (2018), 3287–3304. https://doi.org/10.3906/elk-1802-232 doi: 10.3906/elk-1802-232
    [32] E. Tanyildizi, G. Demir, Golden Sine Algorithm: A novel math-inspired algorithm, Adv. Electr. Comput. Eng., 17 (2017), 71–78. https://doi.org/10.4316/AECE.2017.02010 doi: 10.4316/AECE.2017.02010
    [33] Y. Guo, S. Liu, W. Gao, L. Zhang, Elite opposition-based learning golden-sine harris hawks optimization (in Chinese), Comput. Eng. Appl., 58 (2022), 153–161. http://doi.org/10.3778/j.issn.1002-8331.2011-0321
    [34] P. Yuan, T. Zhang, L. Yao, Y. Lu, W. Zhuang, A hybrid golden jackal optimization and Golden Sine Algorithm with dynamic lens-imaging learning for global optimization problems, Appl. Sci., 12 (2022), 9709. https://doi.org/10.3390/app12199709 doi: 10.3390/app12199709
    [35] J. M. Keller, M. R. Gray, J. A. Givens, A fuzzy k-nearest neighbor algorithm, IEEE Trans. Syst. Man Cybernet., SMC-15 (1985), 580–585. https://doi.org/10.1109/TSMC.1985.6313426
    [36] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey Wolf Optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
    [37] S. Mirjalili, A. Lewis, The Whale Optimization Algorithm, Adv. Eng. Software, 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
    [38] Canadian Institute for Cybersecurity, NSL-KDD dataset, 2009. Available from: https://www.unb.ca/cic/datasets/nsl.html.
    [39] M. S. Elsayed, N. A. Le-Khac, A. D. Jurcut, InSDN: A novel SDN intrusion dataset, IEEE Access, 8 (2020), 165263–165284. https://doi.org/10.1109/ACCESS.2020.3022633 doi: 10.1109/ACCESS.2020.3022633
    [40] L. Kou, S. Ding, T. Wu, W. Dong, Y. Yin, An intrusion detection model for drone communication network in SDN environment, Drones, 6 (2022), 342. https://doi.org/10.3390/drones6110342 doi: 10.3390/drones6110342
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1321) PDF downloads(104) Cited by(3)

Article outline

Figures and Tables

Figures(8)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog