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Abstract: As a meta-heuristic algorithm, the Golden Jackal Optimization (GJO) algorithm has been 
widely used in traditional network intrusion detection due to its ease of use and high efficiency. This 
paper aims to extend its application to the emerging field of Software-Defined Networking (SDN), 
which is a new network architecture. To adapt the GJO for SDN intrusion detection, a modified Golden 
Jackal Optimization (mGJO) is proposed to enhance its performance with the use of two strategies. 
First, an Elite Dynamic Opposite Learning strategy operates during each iteration to find solutions 
opposite to the current global optimal solutions, which increases population diversity. Second, an 
updating strategy based on the Golden Sine II Algorithm is utilized in the exploitation phase to update 
the position information of the golden jackal pairs, which accelerates the search for the best feature 
subset indexes. To validate the feasibility of the mGJO algorithm, this paper first assesses its 
optimization capability using benchmark test functions. Then, four UCI datasets and the NSL-KDD 
dataset are used to test the classification capability of the mGJO algorithm and its application in 
traditional network intrusion detection. Furthermore, the InSDN dataset is used to validate the 
feasibility of the mGJO algorithm for SDN intrusion detection. The experimental results show that, 
when the mGJO algorithm is applied to SDN for intrusion detection, the various indexes of 
classification and the selection of feature subsets achieve better results. 

Keywords: Software-Defined Networking; intrusion detection; feature selection; Golden Jackal 
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1. Introduction  

Over the past few years, a new type of network architecture called as Software-Defined 
Networking (SDN) has been introduced. SDN centralizes control in a network controller and divides 
it from the data plane, which provides a fresh way of looking at network architecture, thus adding more 
programmability [1]. The Computer Numerical Control (CNC) separation can solve the limitations of 
traditional networks and provide more advanced control and services. Still, it also faces challenges of 
scalability, consistency, and reliability due to its physically centralized controller [2,3]. 

Because of the convenience that SDN provides to computer networks, its security is getting more 
and more attention. One of the most important solutions to SDN security issues is network intrusion 
detection [4]. Badotra et al. [5] analyzed the vulnerability of two types of SDN controllers that are 
ONOS and ODL, for DDoS attacks, arranged SDN controllers on a distributed cloud and performed 
DDoS attacks and analyzed the vulnerability, and finally concluded that the OPL-3 node clusters are 
the most effective. Nadeem et al. [6] conducted a comparative analysis of feature selection classifiers 
and machine learning classifiers by combining Random Forest with SDN controllers to detect SDN 
attacks and trained the model by feature elimination pattern to validate the excellence of the proposed 
method. Wang et al. [7] applied Convolutional Neural Networks (CNN) to intrusion detection in SDN, 
optimizing CNN using the firefly algorithm after increasing population diversity and proposed an SDN 
with loT (SD-loT) framework which ensured the accuracy of normal traffic because it detected DDoS 
attacks on SD-loT. 

Network Intrusion Detection System (NIDS) involves the detection and mitigation of malicious 
network intrusions by monitoring and analyzing network traffic, system logs, and other data. As society 
progresses, there is a rising emphasis on network security, leading to the growing significance of NIDS 
as a research focal point within the area of network security [8]. Traditional NIDS and SDN Intrusion 
Detection Systems, also referred to as non-SDN-IDS and SDN-IDS, makeup NIDS. 

For both non-SDN-IDS and SDN-IDS, there are many redundant or irrelevant features in high-
dimensional data, which may affect the classification speed or even reduce the classification accuracy, 
so data dimension is a necessary part of NIDS [9]. As a result, feature selection emerges as a significant 
approach to enhance the performance of NIDS, which aims to decrease the dimension of the feature 
space, constructing a more comprehensible model. It usually leads to better learning performance by 
reducing the dimension [10]. 

Friha et al. [11] proposed a NIDS for both SDN and non-SDN with a federated learning strategy 
and tested the classification accuracy by detecting attacks on three different datasets such as CIC-
IDS2018, MQTTest, and InSDN. Elsayed et al. [12] proposed an improved long and short-term based 
automatic two-stage NIDS for both SDN and no-SDN with ToN-loT and InSDN dataset to validate the 
accuracy and precision of the Intrusion Detection System. To propose the SDN-SlowRate-DDoS 
dataset and validate the generated dataset using the Long Short-Term Memory (LSTM) model of the 
attack flow, Yungaicela-Naula et al. [13] conducted 23 different experiments in which they set up the 
network topology and established parameters such as attacker, victim, and so on. They then restricted 
the connection either temporarily or permanently depending on the intensity of the assault flows. It is 
finally concluded that SDN-IDS works best when the attacker is 4 and the victim is 2. To detect DDoS 
attacks based on VANET for SDN, Anyanwu et al. [14] proposed a Radial Basis Function (RBF) kernel 
for Support Vector Machine (SVM) and an exhaustive parameter search method called Grid Search 
Cross Verification. Then the superiority of the RBF kernel is verified by comparing the RBF, Poly, 
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Linear, and Sigmod kernel, followed by tuning the RBF kernel with C, V, testing the time complexity, 
and comparing it with other Machine Learning (ML) algorithms at CICIDS 2019 to validate the 
superiority of the model. Gu et al. [15] proposed a hybrid feature selection algorithm based on Hadoop 
to select the most effective set of features. Then, a semi-supervised learning K-means algorithm was 
incorporated to use DARPA DDoS, CAIDA “DoS attack 2007” and CICIDS “DoS attack 2017” to 
verify the superiority of the algorithm. 

The Golden Jackal Optimization (GJO) algorithm is a newly proposed meta-heuristic algorithm 
developed by Chopra [16] in 2022. Due to its simplicity, ease of implementation, and robustness, the 
GJO has been widely used in various fields. For instance, the usage of the GJO was recommended by 
Ghandourah et al. [17] to improve the network model and utilize it for the prediction of the 
performance of aluminum and polycarbonate air cavity solar stills. Najjar et al. [18] combined the 
LSTM model with the GJO and applied it to predict the tribological properties of alumina-coated 
silver-reinforced copper nanocomposites. Devi et al. [19] proposed a binary LEO-GJO algorithm by 
integrating LEO escape factors into the GJO and validated it on the UCI dataset for feature selection. 
Das et al. [20] used the GJO for feature selection and validated it using the dataset from the PROMISE 
repository. They also compared different classifiers, such as K-Nearest Neighbors (KNN), Decision 
Tree (DT), Naive Bayes (NB), and Quadratic Discriminant Analysis (QDA). Arini et al. [21] combined 
the GJO with the Joint Opposite Strategy (GJO-JOS) and compared it with the GJO-JOS algorithm 
under CEC 2017 using multiple algorithms to verify its superiority. They also performed the Wilcoxon 
rank sum test for the GJO-JOS, illustrating the engineering usability of the improved algorithm. Lu et 
al. [22] proposed a Quantum Evolutionary Golden Jackal Optimization Algorithm (QEGJOA), which 
was able to obtain a deployment scheme for sensors by increasing the duty cycle. The complexity of 
the algorithm was reduced while the accuracy was improved. 

Our prior works [23–26] include four parts as follows. First, we proposed an integrated 
optimization algorithm incorporating a weighted k-nearest neighbor feature selection combination 
strategy, the ability of the proposed algorithm for non-SDN-IDS was tested using the KDD Cup99 
dataset, which was divided into four groups conditioned on weighted KNN with feature selection, and 
finally it was verified that the proposed method can elevate the value of the accuracy of non-SDN-IDS. 
Second, we proposed a jumping spider optimization algorithm that combines the Harris Hawk 
algorithm with small-hole imaging and tested it with the KDD Cup99 and UNSW-NB15 datasets, 
which verified that the proposed method can improve the accuracy as well as the convergence speed 
of non-SDN-IDS. Third, we proposed a Harris Hawk algorithm optimized by Sin chaotic mapping to 
adjust the initialization of the Control Placement Problems (CPP) scheme. After obtaining the CPP 
format, the diversity of CPP is increased by using the Cauchy variation to find the CPP with the Pareto 
front, and experiments show that the CPP after the proposed scheme is more robust. Fourth, we 
proposed an improved butterfly optimization algorithm combined with black widow optimization for 
the feature selection of NIDS. The UNSW-NB15 dataset is selected for binary classification and multi-
classification simulation experiments. The experimental results show that the proposed algorithm can 
enhance the performance of the feature selection model in non-SDN-IDS and reduce feature dimensions. 

Therefore, considering the above researches, a GJO integrating the Elite Dynamic Opposite 
Learning (EDOL) strategy and the Golden Sine II Algorithm (GoldenSAII) is applied to the feature 
selection problems of SDN-IDS. The EDOL during the initialization stage helps to enhance the quality 
of solutions while avoiding being trapped in local optimal solutions, and the GoldenSAII is brought in 
the exploitation phase to enhance the convergence capability in later phases of the GJO. This paper 
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uses the non-SDN-IDS dataset to compare with existing algorithms to validate the feasibility of the 
modified algorithm on NIDS, and further conducts comparative experiments with the SDN dataset, 
comparing to current conventional and standard algorithms to assess the superiority of the modified 
algorithm for SDN-IDS. The main contributions of this paper are as follows. 

1). The mGJO for the SDN-IDS is proposed. The method solves the drawback that the redundant 
data in the SDN dataset leads to slow convergence of the SDN-IDS algorithm and falls into local 
optimal solutions. The performance of the proposed method is compared with other methods using 
benchmark test functions, four UCI datasets, the NSL-KDD dataset, and the InSDN dataset. 

2). The GJO is improved using two strategies. The EDOL strategy enhances the quality of 
solutions while avoiding being trapped in local optimal solutions. The GoldenSAII is brought into the 
exploitation phase to enhance the convergence capability in later phases of the GJO. 

3). The mGJO is a SDN-IDS feature selection method. This paper uses the binary version of 
the mGJO to select the optimal feature subsets. The mGJO has a robust global search ability and 
discovery ability. 

2. Original algorithm 

The GJO algorithm emulates the hunting behavior of the golden jackal pairs and employs 
mathematical models to simulate their prey-capturing strategies in various scenarios. The golden jackal 
pair hunting is classified into the following phases. 

2.1. Initialization phase 

During the initialization phase, the search space is populated with randomly generated solutions 
according to Eq (1). 

 𝑌 𝐿𝐵 𝑟𝑎𝑛𝑑 ⋅ 𝑈𝐵 𝐿𝐵  (1) 

where 𝑈𝐵 denotes the upper bound and 𝐿𝐵 denotes the lower bound, and “𝑟𝑎𝑛𝑑” denotes a random 
vector with values ranging from 0 to 1. This equation can be used to generate random vectors whose 
values range from 𝑈𝐵 to 𝐿𝐵. The prey matrix initialization is created based on Eq (2). By multiplying 
the values with the difference between 𝑈𝐵 and 𝐿𝐵, this paper ensures that the vector remains within the 
specified range, and adding 𝑈𝐵 to each element ensures that the values do not exceed the upper limit. 

 𝑃𝑜𝑠

𝑌 , … … 𝑌 ,

𝑌 , … … 𝑌 ,

⋮ … … ⋮
𝑌 , … … 𝑌 ,

 (2) 

where 𝑁 denotes the number of prey population and n denotes the dimension, and 𝑌 ,  represents 
the 𝑛 th dimension of the 𝑛 th prey. 

The generated prey matrix 𝑃𝑜𝑠 is computed for each of its positional fitness values to obtain the 
fitness matrix of Eq (3), whereas the one with the smallest fitness value is assigned to the male jackal 
and the second smallest one to the female jackal. 
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 𝐹𝑖𝑡𝑛𝑒𝑠𝑠

⎣
⎢
⎢
⎡

𝑓 𝑌 , , 𝑌 , , ⋯ 𝑌 ,

𝑓 𝑌 , , 𝑌 , , ⋯ 𝑌 ,

⋮
𝑓 𝑌 , , 𝑌 , , ⋯ 𝑌 , ⎦

⎥
⎥
⎤
 (3) 

After completing the initialization phase, the particularly important exploration and exploitation 
phases follow, as shown in Figure 1. 

2.2. Exploration phase 

Due to the nature of jackals, they possess the ability to sense and stalk their prey, but occasionally 
the prey can be difficult to capture. Therefore, jackals wait and look for other prey. This hunting 
behavior, led by male jackals, is known as the exploration phase, where the female jackals follow the 
male jackals. The mathematical representation of the exploration phase is according to Eqs (4) and (5) 
(|E| > 1). 

 𝑌 𝑡 𝑌 𝑡 𝐸 ⋅ |𝑌 𝑡 𝑟𝑙 ⋅ 𝑃𝑜𝑠 𝑡 | (4) 

 𝑌 𝑡 𝑌 𝑡 𝐸 ⋅ |𝑌 𝑡 𝑟𝑙 ⋅ 𝑃𝑜𝑠 𝑡 | (5) 

where 𝑡 is the current number of iterations, 𝑌 𝑡  indicates the position of the male jackal, 𝑌 𝑡  
indicates the position of the female jackal, and 𝑃𝑜𝑠 𝑡  is the position vector of the prey. 𝑌 𝑡  and 
𝑌 𝑡  are the latest positions of the male and female jackals. 

E is the escape energy of the prey and is calculated as follows. 

 𝐸 𝐸 ⋅ 𝐸  (6) 

 𝐸 𝑐 ⋅ 1 𝑡/𝑇  (7) 

where 𝐸  denotes a random variable between -1 and 1, denoting the initial energy of the prey, 𝑐  is a 
default value set to 1.5, 𝐸   denotes the decreasing energy of prey, and 𝑇  denotes the maximum 
number of iterations. 

In Eqs (4) and (5), |𝑌 𝑡 𝑟𝑙 ⋅ 𝑃𝑜𝑠 𝑡 | denotes the distance between the golden jackal and the 
prey, and 𝑟𝑙 is a vector of random numbers computed by the Levy flight function. The product of 

𝑟𝑙 and 𝑃𝑜𝑠 𝑡  simulates the movement of the prey in a Levy fashion. 

 𝑟𝑙 0.05 ⋅ 𝐿𝐹 𝑦  (8) 

 𝐿𝐹 𝑦 0.01 ⋅ 𝜇 ⋅ 𝜎 / 𝑣 /  (9) 

 𝜎 ⋅ /

⋅ ⋅
 (10) 

where 𝜇 and 𝑣 are random values in (0, 1) and 𝛽 is a default constant set to 1.5. 

 𝑌 𝑡 1  (11) 

where 𝑌 𝑡 1  is the updated position of the prey based on the golden jackal pairs. 
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2.3. Exploitation phase 

When prey is harassed by golden jackals, the energy to hide is reduced, and then the jackal pairs 
will encircle the prey detected in the previous phase. After encircling, they pounce on the prey and eat 
it. This behavior of male and female jackals hunting together is called as the exploitation phase. The 
mathematical representation of the exploitation phase is according to Eqs (12) and (13) (|E| ≤ 1). 

 𝑌 𝑡 𝑌 𝑡 𝐸 ⋅ |𝑟𝑙 ⋅ 𝑌 𝑡 𝑃𝑜𝑠 𝑡 | (12) 

 𝑌 𝑡 𝑌 𝑡 𝐸 ⋅ |𝑟𝑙 ⋅ 𝑌 𝑡 𝑃𝑜𝑠 𝑡 | (13) 

 

Figure 1. Golden jackal pairs and prey locations during the exploration and exploitation phases.

 3. Modified strategies 

 

Figure 2. The proposed strategies to solve the deficiency of the GJO. 
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The GJO may face challenges in effectively addressing feature selection problems, including 
issues like iterative stagnation, slow convergence in later stages, limited exploration and exploitation 
capabilities, and quickly reaching local optimal solutions, especially in intricate feature spaces. In this 
part, this paper proposes the following two improvement strategies, EDOL and GoldenSAII, to figure 
out the above problems, which are used to solve the problems of insufficient exploitation capability 
and insufficient initialization diversity of the GJO, as shown in Figure 2. 

3.1. Elite Dynamic Opposite Learning strategy 

EDOL is an optimization strategy that employs two techniques, dynamic opposite learning (DOL) 
and elite strategy. In the context of feature selection, DOL introduces opposite individuals to enhance 
the diversity of the feature space. This variety reduces the risk of becoming trapped in local optimal 
solutions and allows for a more in-depth exploration of potentially useful features. Meanwhile, the 
elite strategy preserves the best individuals to make sure that the algorithm preserves its capability to 
explore global optimal solutions. 

3.1.1. Dynamic opposite learning 

As for meta-heuristic algorithms, the initialization is usually done by creating random individuals 
in the search space. While this approach encourages diversity within the population, it does not provide 
any assurances regarding the quality of the initial solutions. However, studies have demonstrated that 
the initialization directly influences both the accuracy and convergence speed [27,28]. Xu et al. [29] 
present a novel solution to address this problem by introducing an innovative approach. They leverage 
an asymmetric dynamic search space to effectively enhance the quality of solutions. Additionally, they 
select the best individuals for initialization through the greedy strategy, thereby improving the initial 
solutions. Therefore, a dynamic opposite learning strategy which increases the quality of the 
initialization is calculated as follows. 

  𝑋 𝑟1 ⋅ 𝐿𝐵 𝑈𝐵 𝑋  (14) 

 𝑋 𝑋 𝑟2 ⋅ 𝑋 𝑋  (15) 

where 𝑋   represents the initialized population generated by random generation, 𝑟1  and 𝑟2 
represent random numbers uniformly distributed between 0 and 1. Since dynamic boundaries are used, 
𝑈𝐵 represents the max value in 𝑋 , 𝐿𝐵 represents the min value in 𝑋 . First, the GJO generates 
two populations, 𝑋  and 𝑋 , whose fitness values are calculated separately. Second, Comparing 
fitness values of 𝑋  and 𝑋 , the smaller one is assigned to the male jackal. In contrast, compared 
to directly assigning fitness values that are second to male jackals to female jackals, the DOL strategy 
assigns fitness values that are greater than that of male jackals and less than that of female jackals 
obtained in the previous cycle will be assigned to female jackals. 

3.1.2. Elite strategy 

In a population, elite individuals contain more valid information than others, and constructing 
elite individuals can increase population diversity [30]. To be included in the elite generation, an 
individual must have the best fitness value at the beginning of each iteration. The elite individual is 
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introduced for the following iteration once the current generation of iterations is finished, and the worst 
fitness value is eliminated. 

3.2. Golden sine II strategy 

Since GoldenSAII possesses a robust global search capability and exhibits fast convergence, it 
enables to search for the optimal feature subset in feature selection. This, in turn, leads to enhanced 
classifier performance. In addition, it expedites convergence and improves exploration capability 
throughout the process. 

GoldenSAII is an algorithm proposed by Tanyildizi [31] to improve Golden Sine Algorithm 
(GoldenSA) [32]. The optimization procedure is usually classified into exploration and exploitation. 
GoldenSAII considers these two phases more than GoldenSA, and the model is shown as follows. 

 𝜃 𝑟 ⋅ 𝑥 ⋅ 𝐷 𝑥 ⋅ 𝑋  (16) 

 𝑋
𝑋 𝑑𝑟 ⋅ 𝑠𝑖𝑛 𝜔 ⋅ 𝑡 ⋅ 𝑟 ⋅ 𝜃          𝑟 0.5
𝑋 𝑑𝑟 ⋅ 𝑠𝑖𝑛 𝜔 ⋅ 𝑡 ⋅ 𝑟 ⋅ 𝜃          𝑟 0.5

 (17) 

where 𝑋   is the current position of the i th individual on the generation 𝑡 . 𝑟  , 𝑟   and 𝑟   represent 
random numbers uniformly distributed between 0 and 1. 𝑑𝑟   is the amplitude of the sinusoidal 
function in the 𝑡 th iteration, which indicates the subsequent location range or the vector representing 
the direction of movement, and the subsequent location range can be both near and far from the target, 
and if 𝑑𝑟  > 1, it indicates the location range far away from the target position; otherwise, if 𝑑𝑟  < 1, 
indicates the opposite. 𝜔  is the angular frequency. 𝐷   is the value that indicates where the ideal 
global target is located. 

 𝑥 𝑎 ⋅ 1 𝜏 𝑏 ⋅ 𝜏 (18) 

 𝑥 𝑏 ⋅ 1 𝜏 𝑎 ⋅ 𝜏 (19) 

𝑥   and 𝑥   are the coefficients derived by the golden section method, where  𝑎  and  𝑏  are 
intervals to be searched and𝜏is the golden ratio with a value of about 0.618033. 

 𝑑𝑟 2 ⋅ 1 𝑡/𝑇  (20) 

where 𝑡  is the current number of iterations and 𝑇  is the maximum number of iterations. The 
fundamental concept of the GoldenSA class of algorithms is to continuously reduce the search area to 
identify the best solutions, this is accomplished by utilizing the golden ratio method and the simplified 
mode of the sinusoidal function, while GoldenSAII introduces the concept of 𝑑𝑟 , which can better 
narrow down the search scope compared to GoldenSA, and jump out of local optimal solutions. 

 𝜔 2 ⋅ 𝜋 ⋅ 𝐹𝑐 (21) 

where 𝐹𝑐 is the frequency. 𝐹𝑐 is the maximum number of iterations multiplied by the population size. 

3.3. The proposed algorithm 

To overcome the lack of the GJO in feature selection, this paper proposed an algorithm called the 
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mGJO. The mGJO includes two significant improvements, the EDOL and the GoldenSAII. 
In the context of feature selection, the traditional GJO typically initializes the golden jackal pairs 

randomly. However, this random initialization may result in a lack of diversity among the pairs, which 
can adversely affect the global optimization search, so the EDOL strategy is suggested. First, the EDOL 
strategy, employed in each iteration, plays a crucial role in generating opposite solutions that are distant 
from local extreme points using Eq (14). This strategy can make the GJO break free from local optimal 
solutions and significantly enhances its capability to identify the best solutions [33]. Furthermore, the 
tracking search pattern, which is based on the dynamic boundaries defined by Eq (15), helps locate 
individuals within a shrinking search region [34]. The elite strategy can retain individuals who contain 
more information, thus selecting a better subset of features. The incorporation of the EDOL strategy, 
which enhances the diversity of the feature subset and the initialization, can find the best solutions. 

Second, the GoldenSAII improves the exploitation phase of the GJO, and the position updates are 
according to the following equations. 

 𝐷 𝑟 ⋅ 𝑥 ⋅ 𝑌 𝑡 𝑥 ⋅ 𝑃𝑜𝑠 𝑡  (22) 

 𝐷 𝑟 ⋅ 𝑥 ⋅ 𝑌 𝑡 𝑥 ⋅ 𝑃𝑜𝑠 𝑡  (23) 

 𝑌 𝑡
𝑃𝑜𝑠 𝑡 𝑑𝑟 ⋅ 𝑠𝑖𝑛 𝜔 ⋅ 𝑡 ⋅ 𝑟 ⋅ 𝐷          𝑟 0.5
𝑃𝑜𝑠 𝑡 𝑑𝑟 ⋅ 𝑠𝑖𝑛 𝜔 ⋅ 𝑡 ⋅ 𝑟 ⋅ 𝐷          𝑟 0.5 (24) 

 𝑌 𝑡
𝑃𝑜𝑠 𝑡 𝑑𝑟 ⋅ 𝑠𝑖𝑛 𝜔 ⋅ 𝑡 ⋅ 𝑟 ⋅ 𝐷          𝑟 0.5
𝑃𝑜𝑠 𝑡 𝑑𝑟 ⋅ 𝑠𝑖𝑛 𝜔 ⋅ 𝑡 ⋅ 𝑟 ⋅ 𝐷          𝑟 0.5 (25) 

The GoldenSAII, due to its sine-based characteristics, provides advantages over the randomness 
of the Levy flight. It explores the search space evenly and comprehensively, enabling the discovery of 
potentially useful features. By strengthening the capacity to explore the solution space, this enhanced 
exploration capability raises the opportunity to discover a subset of extremely valuable features. By 
guarding against from trapped in local optimal solutions, the mGJO can enhance the overall capability. 
In addition, the search area is gradually reduced according to the golden segmentation coefficients 

𝑥  and 2x  obtained in Eqs (18) and 19, and the updating distance and direction of the golden jackal 

pairs are adjusted according to 𝑟  in Eqs (22) and (23), and 𝑟  in Eqs (24) and (25), which guides the 
individuals to quickly approach the subset of more optimal features, improving the searching speed. 

The flowchart of the mGJO, which combines EDOL and GoldenSAII, is shown in Figure 3. And 
the steps are as follows. 

Step 1. Initialize the algorithm parameters. 
Step 2. Initialize the positions of the golden jackal pairs population and calculate fitness values. 
Step 3. Set the parameters of the golden sine, while deciding the elite individuals of the jackal 

pairs based on the fitness values. 
Step 4. Obtain dynamic opposite solutions for the jackal pairs population based on Eqs (14) and (15), 

then modify the optimal solutions based on the fitness values. 
Step 5. Perform exploitation when the escape energy E value is less than 1 and update the jackal 

pairs position according to Eqs (24) and (25). 
Step 6. Perform exploration when the escape energy E value is greater than or equal to 1, and 

update the jackal pairs position according to Eqs (4) and (5). 
Step 7. Update the position of the prey based on the jackal pairs according to Eq (11). 
Step 8. Exclude individuals with the largest fitness value, and reserve the elite individuals 
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obtained in Step 3 to the population. 
Step 9. Verify if the max iterations have been reached. If it has, end, else return to Step 3. 

3.4. The time complexity of the mGJO 

The time complexity indirectly reflects the convergence rate of the algorithm. The time to 
initialize the parameters is 𝑡 . The population size is 𝑛 and the dimension is 𝑑. According to the 
equations of the update the position of the prey and the golden jackals, the time is 𝑡 , and the time 
provision for calculating the fitness is 𝑇 . The time complexity of GJO is as follow. 

 𝑂 𝑛 𝑂 𝑡 𝑛 ⋅ 𝑑 ⋅ 𝑡 𝑇 𝑂 𝑑 𝑇  (26) 

In the mGJO, the time to initialize the parameters is 𝑡 , and the time to perform the EDOL is 𝑡 . 
According to the equations of the update the position of the prey and the golden jackals, the time is 
𝑡 . The time complexity of the mGJO is as follow. 

 𝑂 𝑛 𝑂 𝑡 𝑛 ⋅ 𝑡 𝑑 ⋅ 𝑡 𝑇 𝑂 𝑑 𝑇  (27) 

The mGJO proposed in this paper has the same time complexity as the GJO. 

 

Figure 3. Flow chart of the mGJO. 
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4. Steps and methods 

This section describes applying the mGJO to feature selection problems for non-SDN-IDS and 
SDN-IDS. The following stages involve in the application of meta-heuristic algorithms for feature 
selection in NIDS. 

4.1. Data preprocessing 

After downloading the datasets and examining the samples, the first step involves cleaning the 
data. This contains tasks such as imputing missing data, denoising data, and so on. Once the above 
process is completed, the next is to convert the data using the label encoding method. This method is 
applied to transform string or categorical attributes into their corresponding numeric representations. 
Label encoding is used because the classifier applies to numeric types. The last step involves 
normalizing the data by performing a min-max normalization on all features. This process involves 
normalizing all features to the range between 0 and 1, which is convenient for the algorithm to process. 
The normalization method is shown in Eq (28). 

 𝑍  (28) 

where 𝑍  represents the maximum boundary of the target, 𝑍  represents the minimum boundary 
of the target, 𝑍 represents the input data, and 𝑍  represents the normalized data. 

4.2. Feature selection 

Feature selection can identify the best subset of features while reducing the dimension. First, the 
processed dataset is classified into a test set, used for selecting the feature subset, and a training set, 
used for initialization. Once the population has been initialized and the population fitness has been 
computed, the elite individual is the one with the lowest fitness value. Next, using the EDOL, the 
population opposite solution is obtained, and the current optimal solution is updated. When it comes 
to exploitation, the GoldenSAII is introduced to find more potential features, which facilitates the 
discovery of optimal feature subsets. During the exploration phase, the initial algorithm is employed. 
Before the elite strategy is implemented, it updates the location of prey based on jackal pairs. After all 
the iterations are completed, the feature indexes are output. At last, the feature subsets from the test set 
are selected according to the feature indexes. 

4.3. Classifier evaluation 

This paper selects KNN [35] as the classifier. The KNN classifier uses the training set to train and 
get the feature indexes, selection is made from the test set based on the indexes obtained. Then the 
confusion matrix is quoted as obtaining TP, TN, FN, and FP, the significance of these four values will 
be described in Section 5, and the remaining metrics Pre, Rec, F1, and Acc are calculated. 

The flowchart for using the mGJO to feature selection is displayed in Figure 4. 
The steps to use the mGJO for the feature selection are as follows. 
Step 1. Preprocess and divide the data. 
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Step 2. The training set is applied to initialize the parameters of the mGJO. 
Step 3. Initialize the positions of the jackal pairs population and calculate fitness values. 
Step 4. Set the parameters of the golden sine, while determining the elite individuals of the jackal 

pairs based on the fitness values. 
Step 5. Obtain dynamic opposite solutions for the jackal pairs population based on Eqs (14) and (15), 

then modify the optimal solutions based on the fitness values. 
Step 6. Perform exploitation when the escape energy E value is less than 1 and update the jackal 

pairs position according to Eqs (24) and (25). 
Step 7. Perform exploration when the escape energy E value is greater than or equal to 1, and 

update the jackal pairs position according to Eqs (4) and (5). 
Step 8. Update the position of the prey based on jackal pairs according to Eq (11). 
Step 9. Exclude individuals with the largest fitness value within the population based on the 

fitness value, and retain the elite individuals obtained in Step 4 to the population. 
Step 10. Verify if the max iterations have been reached. If it has, go to Step 11, else return to Step 4. 
Step 11. Compare the feature index of the optimal individual with the test set, get the test set after 

feature selection, and then use the classifier for evaluation. 

 

Figure 4. Feature selection flow chart of the mGJO. 
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5. Experiments and results 

5.1. Benchmark function testing 

The simulation test environment is: operating system Windows 11, 64-bit, CPU Intel i5 12400F 
with Nvidia GeForce RTX 3060ti, 16 GB of RAM, main frequency 2.50 GHz, simulation software 
Matlab2020b.  

This paper selects some swarm intelligence algorithms for tests, which are Grey Wolf Optimizer 
(GWO) [36], Whale Optimization Algorithm (WOA) [37], GJO, and the mGJO, which incorporates 
EDOL and GoldenSAII, for comparison. The parameters of all algorithms are displayed in Table 1. 

To test the optimization effect of the mGJO, this paper selects four unimodal functions (f1–f4) 
and four multimodal functions (f5–f8), Table 2 describes the details of the test functions. Table 3 and 
Figure 5 present the outcomes obtained from running the four algorithms independently for 30 
iterations on each test function.  

Based on the selected test functions, results indicate that the mGJO possesses the strongest 
optimization-seeking performance. The mGJO performs significantly better than GJO, GWO, and 
WOA. The mGJO achieves a 100% optimization effect for the functions f1–f8, with an optimal value 
of 0 that can be directly searched for. Except for functions f6–f8, the standard deviation of the improved 
algorithm is 0, indicating strong stability of the mGJO. For functions f3 and f4, the optimization effect 
of the mGJO is notably higher than that of other novel algorithms, with optimal values exceeding 270 
orders of magnitude. The optimization accuracy improves quite a lot compared to the GJO. 

The experiments show that the mGJO overcomes the problem that the GJO tends to fall into 
iterative stagnation and converge slowly at the later stage, and greatly improves optimization accuracy 
and convergence speed. 

5.2. Dataset testing 

In feature selection, the number of selected features and the classification error rate decide the 
capability of the feature subset. The evaluation function is according to Eq (29). 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝛼 ⋅ 𝑒𝑟𝑟𝑜𝑟 𝛽 ⋅
| |

 (29) 

where  𝑓𝑖𝑡𝑛𝑒𝑠𝑠  represents the best value of individual viable solutions of the population, 𝑒𝑟𝑟𝑜𝑟 
indicates the classification error rate, 𝑁𝑓 expresses the feature number, 𝑇 denotes the max iterations, 
𝛼 and 𝛽 are two parameters,   = 0.99,   = 0.01. 

Table 1. Algorithms parameters. 

Parameters Symbol Numbers 
Population size N 50 
Dim D 30 
Max iterations T 500 
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Table 2. Test function. 

Names Test functions Dim Range Min 

Sphere 𝑓 𝑥 𝑥
 

30 [-100, 100] 0 

Schwefel’s 

2.22 
𝑓 𝑥 |𝑥 | |𝑥 | 

 
30 [-10, 10] 0 

Schwefel’s 

1.2 
𝑓 𝑥 𝑥  

 
30 [-100, 100] 0 

Schwefel’s 

2.21 
𝑓 𝑥 𝑚𝑎𝑥 |𝑥 |, 1 𝑖 𝑛  

 
30 [-100, 100] 0 

Rastrigin 𝑓 𝑥 𝑥 10 𝑐𝑜𝑠 2𝜋𝑥 10
 

30 [-5.12, 5.12] 0 

Ackley 𝑓 𝑥 20 𝑒𝑥𝑝 0.2
1
𝑛

𝑥 𝑒𝑥𝑝
1
𝑛

𝑐𝑜𝑠 2𝜋𝑥

20 𝑒

 
30 [-32, 32] 0 

Griewank 𝑓 𝑥
1

4000
𝑥 𝑐𝑜𝑠

𝑥

√𝑖
1

 
30 [-600, 600] 0 

Generalized 

Rastrigin 

𝑓 𝑥
𝜋
𝑛

10 𝑠𝑖𝑛 𝜋𝑦 𝑦 1 1 10 𝑠𝑖𝑛 𝜋𝑦

𝑦 1 𝑢 𝑥 , 10,100,4

𝑦 1
𝑥 1

4
, 𝑢 𝑥 , 𝑎, 𝑘, 𝑚

𝑘 𝑥 𝑎
0

𝑘 𝑥 𝑎

𝑥 𝑎
𝑎 𝑥 𝑎
𝑥 𝑎

30 [-50, 50] 0 
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Table 3. Experimental results of test functions. 

Functions Algorithms Ave Std Min 

ƒ1 GWO 2.5e-34 0 2.5e-34 

 WOA 1.15e-85 0 1.15e-85 

 GJO 6.39e-65 0 6.39e-65 

 mGJO 0 0 0 

ƒ2 GWO 3.73e-20 5.28e-20 2.5e-34 

 WOA 1.98e-56 2.8e-56 1.15e-85 

 GJO 1.48e-37 2.1e-37 6.39e-65 

 mGJO 0 0 0 

ƒ3 GWO 4.78e-10 8.28e-10 2.5e-34 

 WOA 1.06e+04 1.84e+04 1.15e-85 

 GJO 1.77e-25 3.07e-25 6.39e-65 

 mGJO 0 0 0 

ƒ4 GWO 9.6e-09 1.92e-08 0 

 WOA 1.95 3.9 0 

 GJO 2.25e-20 4.5e-20 0 

 mGJO 0 0 0 

ƒ5 GWO 0 0 0 

 WOA 0 0 0 

 GJO 0 0 0 

 mGJO 0 0 0 

ƒ6 GWO 4e-15 1.26e-14 0 

 WOA 4.44e-16 1.4e-15 0 

 GJO 4.44e-16 1.4e-15 0 

 mGJO 8.88e-17 2.81e-16 0 

ƒ7 GWO 3.63e-15 1.21e-14 0 

 WOA 4.04e-16 1.34e-15 0 

 GJO 4.04e-16 1.34e-15 0 

 mGJO 8.07e-17 2.81e-16 0 

ƒ8 GWO 2.22e-03 7.7e-03 0 

 WOA 1.65e-04 5.72e-04 0 

 GJO 1.21e-02 4.19e-02 0 

 mGJO 2.34e-07 8.12e-07 0 
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Figure 5. Test function experiment results. 
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The classifier is KNN with k = 10, and a few evaluation metrics commonly employed in 
classification detection experiments: Accuracy (Acc), Recall (Rec), F1 score (F1), and Precision (Pre) 
are used to evaluate the performance of the algorithm, unit in %. The calculation is according to the 
following equations. 

 𝐴𝑐𝑐  (30) 

 𝐹1  (31) 

 𝑅𝑒𝑐  (32) 

 𝑃𝑟𝑒  (33) 

where 𝑇𝑃 (True Positive) and 𝑇𝑁 (True Negative) denote the values of positive class samples, while 

FP  (False Positive) and FN   (False Negative) denote the values of negative class samples. The 

comparison algorithms chosen for the experiments are still GWO, WOA, and GJO. When it comes to 
parameters, except N is the same as Table 1, T is set to 50 and Dim is the feature number of each dataset. 

5.2.1. UCI dataset 

In this section, four UCI datasets are selected, namely Ionosphere, WDBC, Heartstatlog, and Sonar. 
Table 4 displays the results of the four algorithms that are run on each dataset, along with Figure 6. 

Based on the given four datasets, the test results indicate that mGJO performs best on the 
Ionosphere dataset, thus proving its efficiency on this dataset. On the WDBC and Sonar datasets, the 
remaining three metrics, except for Rec, are the best performers. This shows that the mGJO accurately 
recognizes both positive and dissimilar classes. Although Rec is not the highest, it ranks second and is 
only about 1% lower than the first place. For the Heartstatlog dataset, Acc, Rec, and F1 are all the best 
performers. This means that the mGJO effectively detects positive samples and performs well for 
balanced classifier performance. However, the performance of Pre is not very good, about 9% lower 
than the first place. Nonetheless, it still ranks second. Furthermore, Figure 6 depicts the optimization 
search process of the mGJO on different datasets. According to Figure 6, the mGJO performs faster 
optimization searches on the WDBC and Ionosphere datasets. However, on the Heartstatlog and Sonar 
datasets, there are constant transitions and occasional escapes from local optimal solutions. 

On the given UCI datasets, F1, Acc of the mGJO are consistently higher than those of the other 
comparative algorithms, which indicates that the mGJO can accurately classify most of the samples 
with strong classifiability. 
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Table 4. Experimental results of UCI datasets. 

Datasets Algorithms Acc (%) Pre (%) Rec (%) F1 (%) 
Total 
rank 

Ionosphere GWO 96.1905 95.8333 98.5714 97.1831 2 
 WOA 93.3333 92 98.5714 95.1724 4 
 GJO 94.2857 93.2432 98.5714 95.8333 3 
 mGJO 97.1429 95.8904 100 97.9021 1 
WDBC GWO 92.9412 91.8182 97.1154 94.3925 4 
 WOA 93.5294 92.6606 97.1154 94.8357 2 
 GJO 93.5294 92.6606 97.1154 94.8357 2 
 mGJO 94.7059 94.3925 97.1154 95.7346 1 
Heartstatlog GWO 90.1235 87.5 87.5 87.5 2 
 WOA 87.6543 86.6667 81.25 83.871 4 
 GJO 90.1235 96.1538 78.125 86.2069 3 
 mGJO 91.358 87.8788 90.625 89.2308 1 
Sonar GWO 93.5484 87.8788 88.6667 93.5484 2 
 WOA 87.0968 83.871 90.6667 86.6667 4 
 GJO 88.7097 80.5556 87.6667 89.2308 3 
 mGJO 95.1613 90.625 89.6667 95.082 1 

 

Figure 6. UCI datasets test results. 
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5.2.2. NSL-KDD dataset 

This section uses KDDTrain+_20Percent.txt with KDDTest-21.txt for the test, which is part of 
the NSL-KDD [38] dataset. 

First, the attack stream type column is used as the label after the string type in the dataset 
transforms into a data type. The DoS, Probe, U2R, and R2L classes are all set to 1, representing the 
Abnormal class, while the Normal class is set to 0. Second, the dimension of the dataset is decreased. 
The features of columns 10 through 22 of the network connection vector are eliminated, leaving the 
remaining columns as features. At last, the normalization is carried out, this paper uses the mapminmax 
function so that the data maps to the interval from 0 to 1. This paper takes 5% of the data in KDDTrain 
and KDDTest, KDDTrain is used for training while KDDTest is used for prediction. Table 5 displays 
the results of the four algorithms that are run, along with Figure 7. 

Based on the test results of the NSL-KDD dataset, the mGJO has been ranked as the best 
algorithm overall, with a 3% to 5% increase in Acc, a 4% to 8% increase in Pre, and a 2% to 4% 
increase in F1 in comparison to other algorithms. The highest Acc signifies that the mGJO is highly 
accurate in classifying the entire dataset and has a minimal tendency to misclassify the Normal class 
samples as Abnormal. The highest Pre indicates that the mGJO is precise in predicting samples to the 
Abnormal class, which helps to avoid incorrect predictions of Normal class samples as Abnormal. The 
highest F1 signifies that the mGJO finds the best balance between Pre and Rec, accurately predicting 
Abnormal class samples and efficiently identifying the most relevant features that can be selected for 
all Abnormal class samples. As shown in Figure 7, Fitness values of the mGJO continue to rise with 
fluctuating during the updating, indicating that the mGJO keeps overcoming the local optimal solution 
and has a strong capability to select the best features. Furthermore, the mGJO reaches the optimal 
fitness value in the 19th generation, and the convergence speed is far ahead of other algorithms. 

Compared to tests on the UCI datasets, the results of the NSL-KDD experiment can further 
illustrate the classification capability of the mGJO. The results for F1, Acc, and Pre metrics are 
indicative of a commendable performance. The mGJO can find the optimal subset of features in a 
better way, precisely classify the samples, and strike an optimal balance between the prediction and 
identification of Abnormal class samples. 

Table 5. Experimental results of classification of NSL-KDD dataset. 

Algorithms Acc (%) Rec (%) Pre (%) F1 (%) 
Number of 
features 

Total rank

GWO 82.2695 97.3251 71.6667 82.5480 10 3 
WOA 79.3440 97.1193 68.3068 80.2040 11 4 
GJO 82.5355 97.1193 72.0611 82.7344 10 2 
mGJO 85.4610 95.4733 76.5677 84.9817 6 1 
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Figure 7. NSL-KDD dataset test results. 

In addition, this paper also tests the ROC curve with AUC values shown in Table 6 and Figure 8. 
Based on Table 6 and Figure 8, it can be concluded that the mGJO performs exceptionally well on the 
NSL-KDD dataset. The ROC curve of the mGJO is near the left top corner which implies it reduces 
the possibility of false positives, which suggests that the mGJO performs very close to the optimal 
performance under different thresholds. The AUC value of the mGJO achieves closest to 1, exhibiting 
an enhancement of 0.4% to 4% compared to other algorithms, which indicates the mGJO performs 
well on a high true positive rate and a low false positive rate for sample recognition. The mGJO 
performs better under different thresholds and can classify efficiently. 

Table 6. AUC results of classification of NSL-KDD dataset. 

Algorithms AUC 
GWO 0.9088 
WOA 0.8711 
GJO 0.9107 
mGJO 0.9146 

 

Figure 8. ROC curves. 
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5.2.3. InSDN dataset 

Today, SDN enables a wide range of applications, which are accompanied by threats and 
vulnerabilities, making intrusion detection for SDN essential. Elsayed et al. [39] published an attack-
specific SDN dataset, InSDN, which includes several categories of attacks against SDN components, 
including attacks on the data plane, attacks on control plane communications, attacks on SDN 
controllers, and attacks on the application plane. InSDN contains three datasets in CSV format, Normal, 
OVS, and metasploitable-2, which contains a total of 343,889 pieces of data, 1 label tag, 6 socket 
information, and 77 different features [40]. Table 7 displays that the Normal Group contains 
information about all normal flows, while the OVS Group with Metasploitable-2 Group represents the 
attack flows. 

This paper uses the InSDN dataset for SDN-IDS, which focuses on feature selection for the subset 
features of the SDN environment. This paper combines labels that are from the original dataset and 
features that are shown in Table 8 together as a new SDN dataset. 

Table 7. InSDN dataset composition. 

Data group Traffic 
distribution 

Total number of
instances 

Total% PCAP size 

Normal group Skype, Facebook, 
File Transfer 
Youtube, Email, 
DNS, Chat, 
Browsing 

68,424 19.90% 3.58 GB 

Metasploitable-2 group DDoS 73,529 39.76% 667 MB 
 Probe 61,757   
 DoS 1145   
 BFA 295   
 U2R 17   
OVS group DoS 52,471 40.34% 1.21 GB 
 DDoS 48,413   
 Probe 36,372   
 BFA 1110   
 Web_attack 192   
 Botnet 164   

Since the labels of the InSDN dataset are divided into 8 classes, which are Normal, DoS, DDoS, 
Probe, BFA, Web-Attack, Botnet, and U2R, these label classes are converted to data types 
corresponding to 0, 1, 2, 3, 4, 5, 6, and 7 respectively when performing multiclassification, as the label 
classes of the new dataset, and the remaining 48 columns are normalized using the mapminmax 
function in Matlab to get the processed SDN dataset. Due to the large amount of data in the InSDN 
dataset, all the data in the BFA, Web-Attrack, Botnet, and U2R categories, which have a small amount 
of data, are taken out for the experiment here. The Normal, DoS, DDoS, and Probe categories based 
on the percentage of the original dataset are then randomized to a total of 10,000 instances for testing. 
The proportion of the training set to the test set is 7 to 3. Tables 9 and 10 present the outcomes obtained 
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from running the four algorithms independently for 30 iterations. 

Table 8. The subset features for SDN environment. 

No. Attribute name No. Attribute name 
1 Protocol 25 Fwd-IAT-Min 
2 Flow-duration 26 Bwd-IAT-Tot 
3 Tot-Fwd-Pkts 27 Bwd-IAT-Mean 
4 Tot-Bwd-Pkts 28 Bwd-IAT-Std 
5 TotLen-Fwd-Pkts 29 Bwd-IAT-Max 
6 TotLen-Bwd-Pkts 30 Bwd-IAT-Min 
7 Fwd-Pkt-Len-Max 31 Fwd-Header-Len 
8 Fwd-Pkt-Len-Min 32 Bwd-Header-Len 
9 Fwd-Pkt-Len-Mean 33 Fwd-Pkts/s 
10 Fwd-Pkt-Len-Std 34 Bwd-Pkts/s 
11 Bwd-Pkt-Len-Max 35 Pkt-Len-Min 
12 Bwd-Pkt-Len-Min 36 Pkt-Len-Max 
13 Bwd-Pkt-Len-Mean 37 Pkt-Len-Mean 
14 Bwd-Pkt-Len-Std 38 Pkt-Len-Std 
15 Flow-Byts/s 39 Pkt-Len-Var 
16 Flow-Pkts/s 40 Pkt-Size-Avg 
17 Flow-IAT-Mean 41 Active-Mean 
18 Flow-IAT-Std 42 Active-Std 
19 Flow-IAT-Max 43 Active-Max 
20 Flow-IAT-Min 44 Active-Min 
21 Fwd-IAT-Tot 45 Idle-Mean 
22 Fwd-IAT-Mean 46 Idle-Std 
23 Fwd-IAT-Std 47 Idle-Max 
24 Fwd-IAT-Max 48 Idle-Min 

Based on the results, the mGJO outperforms the other algorithms and claims the top rank. Among 
the four categories, namely DoS, DDoS, BFA, and Web-Attack, the mGJO has the highest Pre. On 
DoS and DDoS, the mGJO improves by about 0.1% compared to the other three algorithms. On BFA 
and Web-Attack, the Pre of the mGJO enhances about 1% than WOA. In terms of overall performance, 
the mGJO ranks second on Normal, Probe, and Botnet. Regarding Rec, Normal performs the best, with 
an improvement of around 0.2% to 0.6% compared to the other three algorithms. However, on DDoS, 
Probe, BFA, and Web-Attack, Normal ranks second. When it comes to F1, Normal, DoS, DDoS, and 
Web-Attack are the four categories with the highest performance, with an improvement of about 0.5% 
compared to other algorithms. In other categories, the mGJO ranks second. When it comes to Acc, the 
mGJO also performs the best. Overall it shows that the mGJO performs excellently in Acc, F1, and 
Pre. Rec, conversely, is slightly worse than F1 and Pre. However, compared to the other algorithms, 
the mGJO ranks first in overall Rec. 

From the above analysis, it is easy to see that the mGJO has an improvement in Acc, F1, and Pre 
compared to the remaining three algorithms, which indicates that the mGJO can also perform at a 
better level in multi-classification problems, with less misclassification of these types of data in the 
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InSDN dataset, and can make the correct predictions. For Normal, DoS, DDoS, and Probe, which are 
classes with high data volume in the original dataset and a lot of attack behaviors that require high Acc 
and Pre, the mGJO is the best performer in these classes combined. As for BFA, Web-Attack, and 
BOTNET, which are classes with fewer attack flows in the InSDN dataset itself, high Rec and high F1 
are often required. The mGJO in these classes also achieves the combined optimum in these two 
metrics. It is shown that the mGJO is suitable for the InSDN dataset and can also perform feature 
selection on the dataset. The experimental data also further illustrates that the mGJO can show strong 
Acc, F1, and Pre when performing feature selection. 

Table 9. Experimental results of classification of InSDN dataset. 

  Normal DoS DDoS Probe BFA Web-Attack BOTNET U2R

 GWO 97.2468 95.1207 99.8043 94.9998 91.3698 81.1554 93.7705 NaN
Pre WOA 96.4762 95.4179 99.8039 94.7440 90.7353 80.4253 94.3478 NaN
(%) GJO 96.6281 95.4217 99.9076 95.3107 91.6636 81.7507 96.4385 NaN
 mGJO 96.7177 95.5942 99.9078 95.2272 91.6947 82.1369 95.5201 NaN
 GWO 94.8096 97.5758 99.6663 95.4955 93.7767 69.1525 100 0 
Rec WOA 94.8898 96.8595 99.5857 95.2102 93.2067 68.4746 100 0 
(%) GJO 95.2505 97.4931 99.5397 95.7958 94.0143 68.1356 100 0 
 mGJO 95.4509 97.3553 99.6087 95.7808 93.8717 68.4746 100 0 
 GWO 96.0120 96.3293 99.7351 95.2459 92.5565 74.6601 96.7798 NaN
F1 WOA 95.6748 96.1317 99.6945 94.9752 91.9525 73.9526 97.0720 NaN
(%) GJO 95.9319 96.4447 99.7232 95.5520 92.8237 74.3071 98.1793 NaN
 mGJO 96.0760 96.4651 99.7580 95.5014 92.7699 74.6669 97.7051 NaN
 GWO    99.0027     
Acc WOA    98.9397     
(%) GJO    99.0317     
 mGJO    99.0368     

Table 10. Ranks and total ranks of each indicator. 

 Pre Rec F1 Acc Total rank 
GWO 3 1 3 3 3 
WOA 4 4 4 4 4 
GJO 2 3 2 2 2 
mGJO 1 1 1 1 1 

6. Conclusions and future works 

To promote the application of the GJO in SDN-IDS, this paper proposes the mGJO that 
incorporates EDOL and GoldenSAII strategies. First, the global search capability of the mGJO is 
verified using the benchmark test function; second, the UCI datasets are used to verify the classification 
ability of mGJO in feature selection; subsequently, the NSL-KDD dataset is used to verify the 
feasibility of mGJO in non-SDN-IDS, which further verifies the ability of mGJO for feature subset 
selection; in the end, the experiments with the InSDN dataset conclude that mGJO can be used for 
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feature selection on InSDN dataset, and it also has a very good effect for SDN-IDS, and it can be 
further extended for use in SDN. 

The mGJO combines the advantages of the EDOL strategy with the GoldenSAII strategy 
compared to the GJO. From the experimental results above, it can be seen that the mGJO performs 
well in the three indicators of F1, Acc, and Pre, but it is difficult to achieve a high value of Rec and at 
the same time, F1 balances Pre and Rec. Moreover, there are fewer datasets for SDN-IDS, which lacks 
the generalizability to be applied in real SDN scenarios. All of these will be further studied and 
improved. In the next step, our work intends to conduct simulation experiments using the SDN 
environment to obtain the flow data for further testing. 
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