Research article

Stability for a 3D Ladyzhenskaya fluid model with unbounded variable delay

  • Received: 26 September 2023 Revised: 13 November 2023 Accepted: 22 November 2023 Published: 05 December 2023
  • This paper is concerned with the stability of solutions to a Ladyzhenskaya fluid model with unbounded variable delay. We first prove the existence, uniqueness and regularity of global weak solutions to the Ladyzhenskaya model by using Galerkin approximations and the energy method based on some suitable assumptions about external forces. Then we obtain that the stationary solution is locally stable. Finally, we establish that the stationary solution has polynomial stability in a particular case of unbounded variable delay.

    Citation: Pan Zhang, Lan Huang. Stability for a 3D Ladyzhenskaya fluid model with unbounded variable delay[J]. Electronic Research Archive, 2023, 31(12): 7602-7627. doi: 10.3934/era.2023384

    Related Papers:

  • This paper is concerned with the stability of solutions to a Ladyzhenskaya fluid model with unbounded variable delay. We first prove the existence, uniqueness and regularity of global weak solutions to the Ladyzhenskaya model by using Galerkin approximations and the energy method based on some suitable assumptions about external forces. Then we obtain that the stationary solution is locally stable. Finally, we establish that the stationary solution has polynomial stability in a particular case of unbounded variable delay.



    加载中


    [1] H. Bae, Existence and analyticity of Lei-Lin solution to the Navier-Stokes equations, Proc. Am. Math. Soc., 143 (2015), 2887–2892. https://doi.org/10.1090/S0002-9939-2015-12266-6 doi: 10.1090/S0002-9939-2015-12266-6
    [2] T. Buckmaster, V. Vicol, Nonuniqueness of weak solutions to the Navier-Stokes equation, Ann. Math., 189 (2019), 101–144. https://doi.org/10.4007/annals.2019.189.1.3 doi: 10.4007/annals.2019.189.1.3
    [3] H. Koch, D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22–35. https://doi.org/10.1006/aima.2000.1937 doi: 10.1006/aima.2000.1937
    [4] P. L. Lions, Mathematical Topics in Fluid Dynamics, Oxford University Press, Oxford, 1996.
    [5] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, 1984. https://doi.org/10.1090/chel/343
    [6] T. Caraballo, J. Real, P. E. Kloeden, Unique strong solutions and $V$-attractors of a three dimensional system of globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 6 (2006), 411–436. https://doi.org/10.1515/ans-2006-0304 doi: 10.1515/ans-2006-0304
    [7] O. A. Ladyzhenskaya, On some nonlinear problems in the theory of continuous media, in Thirty-One Invited Addresses (Eight in Abstract) at the International Congress of Mathematicians in Moscow, 1966, 70 (1968), 73–89. https://doi.org/10.1090/trans2/070/15
    [8] O. A. Ladyzhenskaya, R. A. Silverman, J. T. Schwartz, J. E. Romain, The mathematical theory of viscous incompressible flow, Phys. Today, 17 (1964), 57–58.
    [9] B. Guo, P. Zhu, Partial regularity of suitable weak solution to the system of the incompressible non-Newtonian fluids, J. Differ. Equations, 178 (2002), 281–297. https://doi.org/10.1006/jdeq.2000.3958 doi: 10.1006/jdeq.2000.3958
    [10] H. B. da Veiga, J. Yang, On the partial regularity of suitable weak solutions in the non-Newtonian shear-thinning case, Nonlinearity, 34 (2021), 562. https://doi.org/10.1088/1361-6544/abcd06 doi: 10.1088/1361-6544/abcd06
    [11] H. B. da Veiga, On the regularity of flows with Ladyzhenskaya shear dependent viscosity and slip and non-slip boundary conditions, Commun. Pure Appl. Math., 58 (2005), 552–577. https://doi.org/10.1002/cpa.20036 doi: 10.1002/cpa.20036
    [12] H. B. da Veiga, Navier–Stokes equations with shear thinning viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 11 (2009), 258–273. https://doi.org/10.1007/s00021-008-0258-1 doi: 10.1007/s00021-008-0258-1
    [13] J. Smagorinsky, General circulation experiments with the primitive equations, Mon. Weather Rev., 91 (1963), 99–164.
    [14] J. Necas, J. Malek, M. Rokyta, M. Ruzicka, Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman and Hall/CRC, New York, 1996. https://doi.org/10.1201/9780367810771
    [15] H. Bellout, F. Bloom, J. Nečas, Young measure-valued solutions for non-Newtonian incompressible fluids, Commun. Partial Differ. Equations, 19 (1994), 1763–1803. https://doi.org/10.1080/03605309408821073 doi: 10.1080/03605309408821073
    [16] J. Málek, J. Nečas, K. R. Rajagopal, Global Analysis of the Flows of Fluids with Pressure-Dependent Viscosities, Arch. Rational Mech. Anal., 165 (2002), 243–269. https://doi.org/10.1007/s00205-002-0219-4 doi: 10.1007/s00205-002-0219-4
    [17] J. Málek, J. Nečas, M. Ružička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case $p \geq 2$, Adv. Differ. Equations, 6 (2001), 257–302. https://doi.org/10.57262/ade/1357141212 doi: 10.57262/ade/1357141212
    [18] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.
    [19] Y. Chen, X. Yang, M. Si, The long-time dynamics of 3D non-autonomous Navier-Stokes equations with variable viscosity, ScienceAsia, 44 (2018), 18–26. https://doi.org/10.2306/scienceasia1513-1874.2018.44.018 doi: 10.2306/scienceasia1513-1874.2018.44.018
    [20] X. Yang, B. Feng, S. Wang, Y. Lu, T. F. Ma, Pullback dynamics of 3D Navier-Stokes equations with nonlinear viscosity, Nonlinear Anal.: Real World Appl., 48 (2019), 337–361. https://doi.org/10.1016/j.nonrwa.2019.01.013 doi: 10.1016/j.nonrwa.2019.01.013
    [21] T. Caraballo, J. Real, Navier-Stokes equations with delays, Proc. R. Soc. London, 457 (2001), 2441–2453. https://doi.org/10.1098/rspa.2001.0807 doi: 10.1098/rspa.2001.0807
    [22] T. Caraballo, X. Han, A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions, Discrete Contin. Dyn. Syst.-Ser. S, 8 (2015), 1079–1101. https://doi.org/10.3934/dcdss.2015.8.1079 doi: 10.3934/dcdss.2015.8.1079
    [23] T. Caraballo, J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays, Proc. R. Soc. London, 459 (2003), 3181–3194. https://doi.org/10.1098/rspa.2003.1166 doi: 10.1098/rspa.2003.1166
    [24] T. Caraballo, J. Real, Attractors for 2D Navier-Stokes models with delays, J. Differ. Equations, 205 (2004), 271–297. https://doi.org/10.1016/j.jde.2004.04.012 doi: 10.1016/j.jde.2004.04.012
    [25] J. García-Luengo, P. Marín-Rubio, José Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud., 13 (2013), 331–357. https://doi.org/10.1515/ans-2013-0205 doi: 10.1515/ans-2013-0205
    [26] T. Caraballo, P. Marín-Rubio, J. Valero, Attractors for differential equations with unbounded delays, J. Differ. Equations, 239 (2007), 311–342. https://doi.org/10.1016/j.jde.2007.05.015 doi: 10.1016/j.jde.2007.05.015
    [27] P. Marín-Rubio, A. M. Márquez-Durán, J. Real, Three dimensional system of globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst.-Ser. B, 14 (2010), 655–673. https://doi.org/10.3934/dcdsb.2010.14.655 doi: 10.3934/dcdsb.2010.14.655
    [28] P. Marín-Rubio, J. Real, J. Valero, Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case. Nonlinear Anal., 74 (2011), 2012–2030. https://doi.org/10.1016/j.na.2010.11.008
    [29] W. Liu, R. Yang, X. Yang, Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay, Commun. Pure Appl. Anal., 20 (2021), 1907–1930. https://doi.org/10.3934/cpaa.2021052 doi: 10.3934/cpaa.2021052
    [30] C. T. Anh, D. T. Thanh, Existence and long-time behavior of solutions to Navier-Stokes-Voigt equations with infinite delay, Bull. Korean Math. Soc., 55 (2018), 379–403. https://doi.org/10.4134/BKMS.b170044 doi: 10.4134/BKMS.b170044
    [31] J. Wang, C. Zhao, T. Caraballo, Invariant measures for the 3D globally modified Navier-Stokes equations with unbounded variable delays, Commun. Nonlinear Sci. Numer. Simul., 9 (2020), 105459. https://doi.org/10.1016/j.cnsns.2020.105459 doi: 10.1016/j.cnsns.2020.105459
    [32] L. Liu, T. Caraballo, P. Marín-Rubio, Stability results for 2D Navier-Stokes equations with unbounded delay, J. Differ. Equations, 265 (2018), 5685–5708. https://doi.org/10.1016/j.jde.2018.07.008 doi: 10.1016/j.jde.2018.07.008
    [33] V. M. Toi, Stability and stabilization for the three-dimensional Navier-Stokes-Voigt equations with unbounded variable delay, Evol. Equations Control Theory, 10 (2021), 1007–1023. https://doi.org/10.3934/eect.2020099 doi: 10.3934/eect.2020099
    [34] C. Foias, O. Manley, R. Rosa, R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001. https://doi.org/10.1017/CBO9780511546754
    [35] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ Edition, Springer, New York, 1997. https://doi.org/10.1007/978-1-4612-0645-3
    [36] G. Łukaszewicz, P. Kalita, Navier-Stokes Equations: An Introduction with Applications, Springer International Publishing, Switzerland, 2016. https://doi.org/10.1007/978-3-319-27760-8
    [37] Y. Hino, S. Murakami, T. Naito, Functional-Differential Equations with Infinite Delay, Springer, Berlin, 1991. https://doi.org/10.1007/BFb0084432
    [38] P. Zhang, L. Huang, R. Lu, X Yang, Pullback dynamics of a 3D modified Navier-Stokes equations with double delays, Electron. Res. Arch., 29 (2021), 4137–4157. https://doi.org/10.3934/era.2021076 doi: 10.3934/era.2021076
    [39] B. Wang, B. Guo, Asymptotic behavior of non-autonomous stochastic parabolic equations with nonlinear Laplacian principal part, Electron. J. Differ. Equations, 191 (2013), 1–25.
    [40] J. A. D. Appleby, E. Buckwar, Sufficient conditions for polynomial asymptotic behaviour of the stochastic pantograph equation, Electron. J. Qual. Theory Differ. Equations, 2 (2016), 1–32. https://doi.org/10.14232/ejqtde.2016.8.2 doi: 10.14232/ejqtde.2016.8.2
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(705) PDF downloads(51) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog