Research article

Adaptive learning nonsynchronous control of nonlinear hidden Markov jump systems with limited mode information


  • Received: 14 May 2023 Revised: 14 September 2023 Accepted: 25 September 2023 Published: 19 October 2023
  • In this paper, an adaptive neural network learning based nonsynchronous control method is developed for hidden Markov jump systems with unmodeled nonlinear dynamics. In particular, the system modes are not directly accessible and the limited mode information can be partly estimated by the nonsynchronous controller. More precisely, the mode information with partly accessible transition rates is utilized based on the transition probability matrix. Moreover, the unmodeled nonlinear dynamics are more general in practical applications. Based on the designed mode-dependent controllers with mode observation, sufficient conditions are first exploited by means of the Lyapunov method, such that the desired control performance could be ensured in the mean-square sense. Then, the nonsynchronous mode-dependent controllers are further determined in terms of convex optimization. In the end, our proposed control strategy is applied to a robotic manipulator with varying loads to validate the feasibility with simulation results.

    Citation: Chao Ma, Hang Gao, Wei Wu. Adaptive learning nonsynchronous control of nonlinear hidden Markov jump systems with limited mode information[J]. Electronic Research Archive, 2023, 31(11): 6746-6762. doi: 10.3934/era.2023340

    Related Papers:

  • In this paper, an adaptive neural network learning based nonsynchronous control method is developed for hidden Markov jump systems with unmodeled nonlinear dynamics. In particular, the system modes are not directly accessible and the limited mode information can be partly estimated by the nonsynchronous controller. More precisely, the mode information with partly accessible transition rates is utilized based on the transition probability matrix. Moreover, the unmodeled nonlinear dynamics are more general in practical applications. Based on the designed mode-dependent controllers with mode observation, sufficient conditions are first exploited by means of the Lyapunov method, such that the desired control performance could be ensured in the mean-square sense. Then, the nonsynchronous mode-dependent controllers are further determined in terms of convex optimization. In the end, our proposed control strategy is applied to a robotic manipulator with varying loads to validate the feasibility with simulation results.



    加载中


    [1] H. Mo, G. Farid, Nonlinear and adaptive intelligent control techniques for quadrotor UAV–A survey, Asian J. Control, 21 (2019), 989–1008. https://doi.org/10.1002/asjc.1758 doi: 10.1002/asjc.1758
    [2] S. Patel, A. Sarabakha, D. Kircali, E. Kayacan, An intelligent hybrid artificial neural network-based approach for control of aerial robots, J. Intell. Rob. Syst., 97 (2020), 387–398. https://doi.org/10.1007/s10846-019-01031-z doi: 10.1007/s10846-019-01031-z
    [3] H. J. Kaleybar, H. M. Kojabadi, S. S. Fazel, F. Foiadelli, An intelligent control method for capacity reduction of power flow controller in electrical railway grids, Electr. Power Syst. Res., 165 (2018), 157–166. https://doi.org/10.1016/j.epsr.2018.09.005 doi: 10.1016/j.epsr.2018.09.005
    [4] R. K. Pandey, D. K. Gupta, Intelligent multi-area power control: Dynamic knowledge domain inference concept, IEEE Trans. Power Syst., 32 (2017), 4310–4318. https://doi.org/10.1109/TPWRS.2017.2661799 doi: 10.1109/TPWRS.2017.2661799
    [5] J. Jin, X. Ma, I. Kosonen, An intelligent control system for traffic lights with simulation-based evaluation, Control Eng. Prac., 58 (2017), 24–33. https://doi.org/10.1016/j.conengprac.2016.09.009 doi: 10.1016/j.conengprac.2016.09.009
    [6] G. Yang, D. Tong, Q. Chen, W. Zhou, Fixed-time synchronization and energy consumption for kuramoto-oscillator networks with multilayer distributed control, IEEE Trans. Circuits Syst. Ⅱ Exp. Briefs, 70 (2022), 1555–1559. https://doi.org/10.1109/TCSII.2022.3221477 doi: 10.1109/TCSII.2022.3221477
    [7] D. Tong, B. Ma, Q. Chen, Y. Wei, P. Shi, Finite-time synchronization and energy consumption prediction for multilayer fractional-order networks, IEEE Trans. Circuits Syst. Ⅱ Exp. Briefs, 70 (2023), 2176–2180. https://doi.org/10.1109/TCSII.2022.3233420 doi: 10.1109/TCSII.2022.3233420
    [8] R. R. Selmic, F. L. Lewis, Neural-network approximation of piecewise continuous functions: Application to friction compensation, IEEE Trans. Neural Networks, 13 (2002), 745–751. https://doi.org/10.1109/ISIC.1997.626458 https://doi.org/10.1109/TNN.2002.1000141 doi: 10.1109/ISIC.1997.626458
    [9] W. He, Y. Dong, Adaptive fuzzy neural network control for a constrained robot using impedance learning, IEEE Trans. Neural Networks Learn. Syst., 29 (2017), 1174–1186. https://doi.org/10.1109/TNNLS.2017.2665581 doi: 10.1109/TNNLS.2017.2665581
    [10] Y. J. Liu, Q. Zeng, S. Tong, C. L. P. Chen, L. Liu, Adaptive neural network control for active suspension systems with time-varying vertical displacement and speed constraints, IEEE Trans. Ind. Electr., 66 (2019), 9458–9466. https://doi.org/10.1109/TIE.2019.2893847 doi: 10.1109/TIE.2019.2893847
    [11] S. Li, H. Wang, M. U. Rafique, A novel recurrent neural network for manipulator control with improved noise tolerance, IEEE Trans. Neural Networks Learn. Syst., 29 (2017), 1908–1918. https://doi.org/10.1109/TNNLS.2017.2672989 doi: 10.1109/TNNLS.2017.2672989
    [12] W. Su, B. Niu, H. Wang, W. Qi, Adaptive neural network asymptotic tracking control for a class of stochastic nonlinear systems with unknown control gains and full state constraints, Int. J. Adapt. Control Signal Process., 2021 (2021). https://doi.org/10.1002/acs.3304 doi: 10.1002/acs.3304
    [13] M. Shahvali, M. B. Naghibi-Sistani, J. Askari, Adaptive fault compensation control for nonlinear uncertain fractional-order systems: Static and dynamic event generator approaches, J. Franklin Inst., 358 (2021), 6074–6100. https://doi.org/10.1016/j.jfranklin.2021.05.033 doi: 10.1016/j.jfranklin.2021.05.033
    [14] M. Shahvali, M. B. Naghibi-Sistani, J. Askari, Dynamic event-triggered control for a class of nonlinear fractional-order systems, IEEE Trans. Circuits Syst. Ⅱ Exp. Briefs, 69 (2021), 2131–2135. https://doi.org/10.1109/TCSII.2021.3128561 doi: 10.1109/TCSII.2021.3128561
    [15] M. Shahvali, J. Askari, Adaptive neural dynamic surface control of MIMO stochastic nonlinear systems with unknown control directions, Int. J. Adapt. Control Signal Process., 31 (2017), 97–121. https://doi.org/10.1002/acs.2686 doi: 10.1002/acs.2686
    [16] S. He, H. Fang, M. Zhang, F. Liu, Z. Ding, Adaptive optimal control for a class of nonlinear systems: The online policy iteration approach, IEEE Trans. Neural Networks Learn. Syst., 31 (2019), 549–558. https://doi.org/10.1109/TNNLS.2019.2905715 doi: 10.1109/TNNLS.2019.2905715
    [17] H. Fang, M. Zhang, S. He, X. Luan, F. Liu, Z. Ding, Solving the zero-sum control problem for tidal turbine system: An online reinforcement learning approach, IEEE Trans. Cybern., 2022 (2022). https://doi.org/10.1109/TCYB.2022.3186886 doi: 10.1109/TCYB.2022.3186886
    [18] W. Bai, Q. Zhou, T. Li, H. Li, Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation, IEEE Trans. Cybern., 50 (2019), 3433–3443. https://doi.org/10.1109/TCYB.2019.2921057 doi: 10.1109/TCYB.2019.2921057
    [19] L. Wang, Y. Yang, R. Min, S. Chakradhar, Accelerating deep neural network training with inconsistent stochastic gradient descent, Neural Networks, 93 (2017), 219–229. https://doi.org/10.1016/j.neunet.2017.06.003 doi: 10.1016/j.neunet.2017.06.003
    [20] J. R. Noriega, H. Wang, A direct adaptive neural-network control for unknown nonlinear systems and its application, IEEE Trans. Neural Networks, 9 (1998), 27–34. https://doi.org/10.1109/ACC.1995.532743 doi: 10.1109/ACC.1995.532743
    [21] M. Chen, S. S. Ge, B. V. E. How, Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities, IEEE Trans. Neural Networks, 21 (2010), 796–812. https://doi.org/10.1109/TNN.2010.2042611 doi: 10.1109/TNN.2010.2042611
    [22] H. Razmi, S. Afshinfar, Neural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAV, Aerosp. Sci. Technol., 91 (2019), 12–27. https://doi.org/10.1016/j.ast.2019.04.055 doi: 10.1016/j.ast.2019.04.055
    [23] Q. Zhang, M. Mu, H. Ji, Q. Wang, X. Wang, An adaptive type-2 fuzzy sliding mode tracking controller for a robotic manipulator, Electr. Res. Arch., 31 (2023), 3791–3813. https://doi.org/10.3934/era.2023193 doi: 10.3934/era.2023193
    [24] Y. Zuo, Y. Wang, X. Liu, S. X. Yang, L. Huang, X. Wu, et al., Neural network robust $H_{\infty}$ tracking control strategy for robot manipulators, Appl. Math. Modell., 34 (2010), 1823–1838. https://doi.org/10.1016/j.apm.2009.09.026 doi: 10.1016/j.apm.2009.09.026
    [25] E. K. Boukas, Z. K. Liu, P. Shi, Delay-dependent stability and output feedback stabilisation of markov jump system with time-delay, IEEE Proc. Control Theory Appl., 149 (2002), 379–386. https://doi.org/10.1049/ip-cta:20020442 doi: 10.1049/ip-cta:20020442
    [26] Z. G. Wu, P. Shi, Z. Shu, H. Su, R. Lu, Passivity-based asynchronous control for Markov jump systems, IEEE Trans. Autom. Control, 62 (2016), 2020–2025. https://doi.org/10.1109/TAC.2016.2593742 doi: 10.1109/TAC.2016.2593742
    [27] H. Wan, X. Luan, V. Stojanovic, F. Liu, Self-triggered finite-time control for discrete-time Markov jump systems, Inf. Sci., 634 (2023), 101–121. https://doi.org/10.1016/j.ins.2023.03.070 doi: 10.1016/j.ins.2023.03.070
    [28] P. Cheng, S. He, X. Luan, F. Liu, Finite-region asynchronous $H_{\infty}$ control for 2D Markov jump systems, Automatica, 129 (2021), 109590. https://doi.org/10.1016/j.automatica.2021.109590 doi: 10.1016/j.automatica.2021.109590
    [29] P. Cheng, H. Wang, V. Stojanovic, F. Liu, S. He, K. Shi, Dissipativity-based finite-time asynchronous output feedback control for wind turbine system via a hidden Markov model, Int. J. Syst. Sci., 53 (2022), 3177–3189. https://doi.org/10.1080/00207721.2022.2076171 doi: 10.1080/00207721.2022.2076171
    [30] P. He, J. Wen, V. Stojanovic, F. Liu, X. Luan, Finite-time control of discrete-time semi-Markov jump linear systems: A self-triggered MPC approach, J. Franklin Inst., 359 (2022), 6939–6957. https://doi.org/10.1016/j.jfranklin.2022.06.043 doi: 10.1016/j.jfranklin.2022.06.043
    [31] A. Y. Lu, G. H. Yang, Input-to-state stabilizing control for cyber-physical systems with multiple transmission channels under denial of service, IEEE Trans. Autom. Control, 63 (2017), 1813–1820. https://doi.org/10.1109/TAC.2017.2751999 doi: 10.1109/TAC.2017.2751999
    [32] A. Y. Lu, G. H. Yang, Switched projected gradient descent algorithms for secure state estimation under sparse sensor attacks, Automatica, 103 (2019), 503–514. https://doi.org/10.1016/j.automatica.2019.02.016 doi: 10.1016/j.automatica.2019.02.016
    [33] S. Dong, Z. G. Wu, Y. J. Pan, H. Su, Y. Liu, Hidden-markov-model-based asynchronous filter design of nonlinear Markov jump systems in continuous-time domain, IEEE Trans. Cybern., 49 (2018), 2294–2304. https://doi.org/10.1109/TCYB.2018.2824799 doi: 10.1109/TCYB.2018.2824799
    [34] F. Li, S. Xu, H. Shen, Q. Ma, Passivity-based control for hidden markov jump systems with singular perturbations and partially unknown probabilities, IEEE Trans. Autom. Control, 65 (2019), 3701–3706. https://doi.org/10.1109/TAC.2019.2953461 doi: 10.1109/TAC.2019.2953461
    [35] J. Cheng, C. K. Ahn, H. R. Karimi, J. Cao, W. Qi, An event-based asynchronous approach to Markov jump systems with hidden mode detections and missing measurements, IEEE Trans. Syst. Man Cybern. Syst., 49 (2018), 1749–1758. https://doi.org/10.1109/TSMC.2018.2866906 doi: 10.1109/TSMC.2018.2866906
    [36] S. Dong, C. L. P. Chen, M. Fang, Z. G. Wu, Dissipativity-based asynchronous fuzzy sliding mode control for T–S fuzzy hidden Markov jump systems, IEEE Trans. Cybern., 50 (2019), 4020–4030. https://doi.org/10.1109/TCYB.2019.2919299 doi: 10.1109/TCYB.2019.2919299
    [37] Y. Zhang, Y. He, M. Wu, J. Zhang, Stabilization for Markovian jump systems with partial information on transition probability based on free-connection weighting matrices, Automatica, 47 (2011), 79–84. https://doi.org/10.1016/j.automatica.2010.09.009 doi: 10.1016/j.automatica.2010.09.009
    [38] Z. Xu, H. Su, P. Shi, Z. G. Wu, Asynchronous $h_{\infty}$ control of semi-markov jump linear systems, Appl. Math. Comput., 349 (2019), 270–280. https://doi.org/10.1016/j.amc.2018.12.010 doi: 10.1016/j.amc.2018.12.010
    [39] C. Ma, P. Shi, X. Zhao, Q. Zeng, Consensus of euler-lagrange systems networked by sampled-data information with probabilistic time delays, IEEE Trans. Cybern., 45 (2014), 1126–1133. https://doi.org/10.1109/TCYB.2014.2345735 doi: 10.1109/TCYB.2014.2345735
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(959) PDF downloads(40) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog