Research article Special Issues

Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations

  • Received: 14 June 2023 Revised: 10 August 2023 Accepted: 17 September 2023 Published: 25 September 2023
  • This paper concerns energy conservation for weak solutions of compressible Navier-Stokes-Maxwell equations. For the energy equality to hold, we provide sufficient conditions on the regularity of weak solutions, even for solutions that may include exist near-vacuum or on a boundary. Our energy conservation result generalizes/extends previous works on compressible Navier-Stokes equations and an incompressible Navier-Stokes-Maxwell system.

    Citation: Jie Zhang, Gaoli Huang, Fan Wu. Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations[J]. Electronic Research Archive, 2023, 31(10): 6412-6424. doi: 10.3934/era.2023324

    Related Papers:

  • This paper concerns energy conservation for weak solutions of compressible Navier-Stokes-Maxwell equations. For the energy equality to hold, we provide sufficient conditions on the regularity of weak solutions, even for solutions that may include exist near-vacuum or on a boundary. Our energy conservation result generalizes/extends previous works on compressible Navier-Stokes equations and an incompressible Navier-Stokes-Maxwell system.



    加载中


    [1] P. L. Lions, Mathematical Topics in Fluid Dynamics, Compressible models Oxford Science Publication, Oxford, 2 (1998).
    [2] E. Feireisl, A. Novotný, H. Petzeltova, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358–392. https://doi.org/10.1007/PL00000976 doi: 10.1007/PL00000976
    [3] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2003. https://doi.org/10.1093/acprof: oso/9780198528388.001.0001
    [4] E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Birkhäuser, Basel, 2009. https://doi.org/10.1007/978-3-7643-8843-0
    [5] C. Yu, Energy conservation for the weak solutions of the compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 225 (2017), 1073–1087. https://doi.org/10.1007/s00205-017-1121-4 doi: 10.1007/s00205-017-1121-4
    [6] Q. H. Nguyen, P. T. Nguyen, B. Q. Tang, Energy equalities for compressible Navier-Stokes equations, Nonlinearity, 32 (2019), 4206–4231. https://doi.org/10.1088/1361-6544/ab28ae doi: 10.1088/1361-6544/ab28ae
    [7] Z. Liang, Regularity criterion on the energy conservation for the compressible Navier-Stokes equations, in Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 151 (2021), 1954–1971. https://doi.org/10.1017/prm.2020.87
    [8] Y. Ye, Y. Wang, W. Wei, Energy equality in the isentropic compressible Navier-Stokes equations allowing vacuum, J. Differ. Equations, 338 (2022), 551–571. https://doi.org/10.1016/j.jde.2022.08.013 doi: 10.1016/j.jde.2022.08.013
    [9] D. Ma, F. Wu, Shinbrot's energy conservation criterion for the 3D Navier-Stokes-Maxwell system, C.R. Math., 361 (2023), 91–96. https://doi.org/10.5802/crmath.379 doi: 10.5802/crmath.379
    [10] F. Wu, On the Energy equality for distributional solutions to Navier-Stokes-Maxwell system, J. Math. Fluid Mech., 24 (2022), 111. https://doi.org/10.1007/s00021-022-00740-0 doi: 10.1007/s00021-022-00740-0
    [11] P. L. Lions, Mathematical topics in fluid mechanics, Incompressible Models, in Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, 1 (1996).
    [12] I. Lacroix-Violet, A. Vasseur, Global weak solutions to the compressible quantum Navier-Stokes equation and its semi-classical limit, J. Math. Pures Appl., 114 (2018), 191–210. https://doi.org/10.1016/j.matpur.2017.12.002 doi: 10.1016/j.matpur.2017.12.002
    [13] J. Simon, Compact sets in the space $L^{p}(0, T; B)$, Ann. Mat. Pura Appl., 146 (1986), 65–96. https://doi.org/10.1007/BF01762360 doi: 10.1007/BF01762360
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(943) PDF downloads(81) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog