Research article Special Issues

On the regularization and matrix Lyapunov functions for fuzzy differential systems with uncertain parameters

  • Received: 31 May 2023 Revised: 30 July 2023 Accepted: 01 September 2023 Published: 12 September 2023
  • In this paper, for a regularized fuzzy system, a generalization of the direct Lyapunov method is adapted on the base of matrix-valued Lyapunov-like functions. First, the new concept of a regularization scheme for fuzzy systems is discussed and the matrix-valued Lyapunov function technique is introduced. Then, sufficient conditions are established for the boundedness and stability of the equilibrium set of solutions of the regularized fuzzy system of differential equations. Scalar and vector Lyapunov-type functions are used based on an auxiliary matrix-valued function. Finally, a discussion is offered for the future directions of the proposed approach. Since the strategies for the analysis of the stability of fuzzy models are very important in numerous aspects, we expect that our results will inspire researchers to develop the introduced concept.

    Citation: Anatoliy Martynyuk, Gani Stamov, Ivanka Stamova, Yulya Martynyuk–Chernienko. On the regularization and matrix Lyapunov functions for fuzzy differential systems with uncertain parameters[J]. Electronic Research Archive, 2023, 31(10): 6089-6119. doi: 10.3934/era.2023310

    Related Papers:

  • In this paper, for a regularized fuzzy system, a generalization of the direct Lyapunov method is adapted on the base of matrix-valued Lyapunov-like functions. First, the new concept of a regularization scheme for fuzzy systems is discussed and the matrix-valued Lyapunov function technique is introduced. Then, sufficient conditions are established for the boundedness and stability of the equilibrium set of solutions of the regularized fuzzy system of differential equations. Scalar and vector Lyapunov-type functions are used based on an auxiliary matrix-valued function. Finally, a discussion is offered for the future directions of the proposed approach. Since the strategies for the analysis of the stability of fuzzy models are very important in numerous aspects, we expect that our results will inspire researchers to develop the introduced concept.



    加载中


    [1] J. P. LaSalle, S. Lefschetz, Stability by Lyapunov's Second Method with Applications, Academic Press, New York, 1961. Available from: https://www.elsevier.com/books/stability-by-liapunovs-direct-method-with-applications-by-joseph-l-salle-and-solomon-lefschetz/la-salle/978-0-12-437056-2.
    [2] A. M. Lyapunov, Stability of Motion, Academic Press, New York & London, 1966. Available from: https://www.elsevier.com/books/stability-of-motion/liapunov/978-1-4832-3009-2.
    [3] G. Leitmann, Deterministic control of uncertain systems via a constructive use of Lyapunov stability theory, in System Modelling and Optimization, Springer, (1990), 38–55. https://doi.org/10.1007/BFb0008354
    [4] M. J. Lacerda, P. Seiler, Stability of uncertain systems using Lyapunov functions with non-monotonic terms, Automatica, 82 (2017), 187–193. https://doi.org/10.1016/j.automatica.2017.04.042 doi: 10.1016/j.automatica.2017.04.042
    [5] G. Stamov, I. M. Stamova, Uncertain impulsive differential systems of fractional order: almost periodic solutions, Int. J. Syst. Sci., 49 (2018), 631–638. https://doi.org/10.1080/00207721.2017.1416428 doi: 10.1080/00207721.2017.1416428
    [6] G. T. Stamov, I. M. Stamova, J. Cao, Uncertain impulsive functional differential systems of fractional order and almost periodicity, J. Franklin Inst., 355 (2018), 5310–5323. https://doi.org/10.1016/j.jfranklin.2018.05.021 doi: 10.1016/j.jfranklin.2018.05.021
    [7] F. Z. Taousser, M. Defoort, M. Djemai, Stability analysis of a class of uncertain switched systems on time scale using Lyapunov functions, Nonlinear Anal. Hybrid Syst., 16 (2015), 13–23. https://doi.org/10.1016/j.nahs.2014.12.001 doi: 10.1016/j.nahs.2014.12.001
    [8] Z. Liu, L. Jia, Cross-validation for the uncertain Chapman-Richards growth model with imprecise observations, Int. J. Uncertainty Fuzziness Knowledge Based Syst., 28 (2020), 769–783. https://doi.org/10.1142/S0218488520500336 doi: 10.1142/S0218488520500336
    [9] P. S. P. Pessim, V. J. S. Leite, M. J. Lacerda, Robust performance for uncertain systems via Lyapunov functions with higher order terms, J. Franklin Inst., 356 (2019), 3072–3089. https://doi.org/10.1016/j.jfranklin.2019.02.004 doi: 10.1016/j.jfranklin.2019.02.004
    [10] T. J. Sullivan, Introduction to Uncertainty Quantification, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-23395-6
    [11] X. Xu, C. Huang, C. Li, G. Zhao, X. Li, C. Ma, Uncertain design optimization of automobile structures: a survey, Electron. Res. Arch., 31 (2023), 1212–1239. https://doi.org/10.3934/era.2023062 doi: 10.3934/era.2023062
    [12] G. W. Wei, Uncertain linguistic hybrid geometric mean operator and its application to group decision making under uncertain linguistic environment, Int. J. Uncertainty Fuzziness Knowledge Based Syst., 17 (2009), 251–267. https://doi.org/10.1142/S021848850900584X doi: 10.1142/S021848850900584X
    [13] A. A. Martynyuk, Y. A. Martynyuk-Chernienko, Uncertain Dynamical Systems——Stability and Motion Control, CRC Press, Boca Raton, 2012. https://doi.org/10.1201/b11314
    [14] V. Lakshmikantham, S. Leela, A. A. Martynyuk, Stability Analysis of Nonlinear Systems, Birkhauser, Cham, 2015. https://doi.org/10.1007/978-3-319-27200-9
    [15] V. Lakshmikantham, V. M. Matrosov, S. Sivasundaram, Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Springer Dordrecht, 1991. https://doi.org/10.1007/978-94-015-7939-1
    [16] V. M. Matrosov, Vector Lyapunov function method: theory and applications to complex industrial systems, IFAC Proc. Vol., 30 (1997), 49–62. https://doi.org/10.1016/S1474-6670(17)43346-5 doi: 10.1016/S1474-6670(17)43346-5
    [17] I. M. Stamova, Vector Lyapunov functions for practical stability of nonlinear impulsive functional differential equations, J. Math. Anal. Appl., 325 (2007), 612–623. https://doi.org/10.1016/j.jmaa.2006.02.019 doi: 10.1016/j.jmaa.2006.02.019
    [18] A. A. Martynyuk, Stability by Liapunov's Matrix Function Method with Applications, CRC Press, New York, 1998. Available from: https://www.amazon.com/Stability-Liapunovs-Function-Applications-Mathematics/dp/0824701917.
    [19] A. A. Martynyuk, Qualitative Methods in Nonlinear Dynamics. Novel Approaches to Liapunov's Matrix Functions, Marcel Dekker, Inc., New York, 2002. Available from: https://www.routledge.com/Qualitative-Methods-in-Nonlinear-Dynamics-Novel-Approaches-to-Liapunovs/Martynyuk/p/book/9780367396770.
    [20] V. Lakshmikantham, R. N. Mohapatra, Theory of Fuzzy Differential Equations and Inclusions, CRC Press, London, 2003. https://doi.org/10.1201/9780203011386
    [21] X. Fan, Z. Wang, A fuzzy Lyapunov function method to stability analysis of fractional-order T–S fuzzy systems, IEEE Trans. Fuzzy Syst., 30 (2022), 2769–2776. https://doi.org/10.1109/TFUZZ.2021.3078289 doi: 10.1109/TFUZZ.2021.3078289
    [22] M. B. Gücen, C. Yakar, Strict stability of fuzzy differential equations by Lyapunov functions, Int. J. Inf. Control Comput. Sci., 11 (2018), 1267–1277. https://doi.org/10.5281/zenodo.1316718 doi: 10.5281/zenodo.1316718
    [23] V. Lakshmikantham, S. Leela, Stability theory of fuzzy differential equations via differential inequalities, Math. Inequal. Appl., 2 (1999), 551–559. https://doi.org/10.7153/mia-02-46 doi: 10.7153/mia-02-46
    [24] S. Song, C. Wu, E. S. Lee, Asymptotic equilibrium and stability of fuzzy differential equations, Comput. Math. Appl., 49 (2005), 1267–1277. https://doi.org/10.1016/j.camwa.2004.03.016 doi: 10.1016/j.camwa.2004.03.016
    [25] Z. P. Yang, W. J. Ren, Existence and stability results for quaternion fuzzy fractional differential equations in the sense of Hilfer, J. Intell. Fuzzy Syst., 34 (2018), 167–175. https://doi.org/10.3233/JIFS-171042 doi: 10.3233/JIFS-171042
    [26] A. Martynyuk, G. Stamov, I. Stamova, Y. Martynyuk-Chernienko, Regularization scheme for uncertain fuzzy differential equations: analysis of solutions, Electron. Res. Arch., 31 (2023), 3832–3847. https://doi.org/10.3934/era.2023195 doi: 10.3934/era.2023195
    [27] P. Diamond, P. Kloeden, Metric Spaces of Fuzzy Sets: Theory and Applications, World Scientific, Singapore, 1994. Available from: https://www.worldscientific.com/worldscibooks/10.1142/2326#t = aboutBook.
    [28] C. V. Negoita, D. A. Ralescu, Applications of Fuzzy Sets to System Analysis, Springer, Basel, 1975. Available from: https://link.springer.com/book/10.1007/978-3-0348-5921-9.
    [29] H. J. Zimmermann, Fuzzy Set Theory——and Its Applications, Springer, New York, 2001. Available from: https://link.springer.com/book/10.1007/978-94-010-0646-0.
    [30] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, New York, 1992. https://doi.org/10.1515/9783110874228
    [31] M. L. Puri, D. A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552–558. https://doi.org/10.1016/0022-247X(83)90169-5 doi: 10.1016/0022-247X(83)90169-5
    [32] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [33] J. J. Buckley, T. Feuring, Fuzzy differential equations, Fuzzy Sets Syst., 110 (2000), 43–54. https://doi.org/10.1016/S0165-0114(98)00141-9 doi: 10.1016/S0165-0114(98)00141-9
    [34] O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7 doi: 10.1016/0165-0114(87)90029-7
    [35] O. Kaleva, The Peano theorem for fuzzy differential equations revisited, Fuzzy Sets Syst., 98 (1998), 147–148. https://doi.org/10.1016/S0165-0114(97)00415-6 doi: 10.1016/S0165-0114(97)00415-6
    [36] D. Vorobiev, S. Seikkala, Towards the theory of fuzzy differential equations, Fuzzy Sets Syst., 125 (2002), 231–237. https://doi.org/10.1016/S0165-0114(00)00131-7 doi: 10.1016/S0165-0114(00)00131-7
    [37] M. Mazandarani, L. Xiu, A review on fuzzy differential equations, IEEE Access, 9 (2021), 62195–62211. https://doi.org/10.1109/ACCESS.2021.3074245 doi: 10.1109/ACCESS.2021.3074245
    [38] C. Yakar, M. Çiçek, M. B. Gücen, Practical stability, boundedness criteria and Lagrange stability of fuzzy differential systems, Comput. Math. Appl., 64 (2012), 2118–2127. https://doi.org/10.1016/j.camwa.2012.04.008 doi: 10.1016/j.camwa.2012.04.008
    [39] A. Martynyuk, I. Stamova, Y. A. Martynyuk-Chernienko, On the boundedness and Lagrange stability of fractional-like neural network-based quasilinear systems, Eur. Phys. J. Spec. Top., 231 (2022), 1789–1799. https://doi.org/10.1140/epjs/s11734-022-00447-3 doi: 10.1140/epjs/s11734-022-00447-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(893) PDF downloads(63) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog