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Abstract: In this paper, for a regularized fuzzy system, a generalization of the direct Lyapunov method
is adapted on the base of matrix-valued Lyapunov-like functions. First, the new concept of a regular-
ization scheme for fuzzy systems is discussed and the matrix-valued Lyapunov function technique is
introduced. Then, sufficient conditions are established for the boundedness and stability of the equi-
librium set of solutions of the regularized fuzzy system of differential equations. Scalar and vector
Lyapunov-type functions are used based on an auxiliary matrix-valued function. Finally, a discussion
is offered for the future directions of the proposed approach. Since the strategies for the analysis of
the stability of fuzzy models are very important in numerous aspects, we expect that our results will
inspire researchers to develop the introduced concept.
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1. Introduction

One of the main assumptions in the classical stability of motion theory [1, 2] is the assumption of
the invariance of the parameters of a system in the course of its movement.

Further development of the stability theory is associated with the investigation of dynamical sys-
tems with uncertain parameters. See, for example, [3] and some of the references therein, as well as
some recent results on models with uncertain parameters [4–7]. The active research on the stability
analysis for systems with parameter uncertainties shows the importance of the topic for practice. In
fact, many real-world problems exhibit different types of uncertainties. That is why there are numerous
studies that have addressed the elaboration of power techniques to investigate of the effect of parameter
uncertainties [8–12].
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One of the main tools in the study of the stability behavior of different classes of systems with
uncertain parameters are the scalar and vector Lyapunov-type of functions [13–17]. The method of
matrix-valued Lyapunov functions for the stability analysis of the solutions of continuous systems of
differential equations has been developed and outlined in the monographs [18, 19].

Due to the benefits for theory and applications, the Lyapunov function strategy has attracted much
attention from researchers of fuzzy systems of differential equations, and it is intensively applied in
their stability analysis. For example, the book [20] offers an excellent overview of the state-of-the-art
research on the theory of fuzzy differential equations and inclusions and provides a systematic account
of the developments in their stability analysis. The stability theory for fuzzy differential equations
based on Lyapunov functions has also been developed in numerous articles [21–25]. However, the
method of matrix Lyapunov functions has not been elucidated for such systems, which is one of the
main goals of this research.

In addition, for fuzzy systems with uncertain parameters, the development of new methods for the
qualitative analysis of stability and boundedness remains an open problem.

In our earlier paper [26] we introduced a regularization scheme for systems of fuzzy differential
equations with uncertain parameters as a new approach in the study of the properties of such systems.
The proposed strategy reduces a collection of fuzzy differential equations to a simple form that allows
for analysis of the properties of solutions of both the original fuzzy system of differential equations, as
well as the reduced collection of differential equations. The idea is to use a family of mappings and
regularize the fuzzy systems with respect to uncertain parameters.

In this paper, using the proposed approach in [26], sufficient conditions for the stability and bound-
edness of the equilibria of the regularized fuzzy system are proposed through the application of the
Lyapunov function method on the basis of matrix-valued functions and non-linear integral inequalities.
The established results contribute to the development of new methods for the study of fuzzy differen-
tial systems with uncertain parameters. This research also adopts the matrix-valued Lyapunov function
strategy to their qualitative analysis.

The contributions of our paper are as follows:
(i) using a new regularization scheme for uncertain fuzzy differential equations with uncertain pa-

rameter we establish stability criteria for the regularized system via the matrix-valued Lyapunov func-
tion technique;

(ii) stability analysis for autonomous comparison problems is proposed and new stability results for
autonomous systems are established;

(iii) boundedness and Lagrange stability criteria for the regularized system are proved;
(iv) the results offered show that the regularization scheme is a very advantageous technique which

allows for analysis of the qualitative properties of solutions of both the original fuzzy system of differ-
ential equations, as well as the intermediate families of differential equations in a simple way.

The investigation is organized according to the following plan. In Section 2 some important notes
on fuzzy sets and functions are provided. Section 3 is devoted to the new regularization approach
developed in [26]. Matrix-valued Lyapunov functions and some of their properties are considered in
Section 4. In Section 5 stability, uniform stability and asymptotic stability results for the regularized
system are established. In Section 6, a stability analysis for autonomous comparison problems is
conducted. Section 7 includes the boundedness results. Finally, Section 8 offers some comments and
future directions for research.
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2. Notes on fuzzy sets and functions

We assume that X is a basic set, and that, for any x ∈ X, φ(x) is a membership function that takes
its values from the interval [0, 1]. Following [27–29] for a fuzzy set with a membership function φ on
X its κ-level sets [φ]κ are defined as

[φ]κ = {x ∈ X : φ(x) ≥ κ}, κ ∈ (0, 1]

and its support is given by

[φ]0 =
⋃
κ∈(0,1]

[φ]κ.

We will use the following notation for the Hausdorff distance between two sets Ξ,Π ∈ Rn and
Ξ,Π , ∅:

dH(Ξ,Π) = min{H ≥ 0 : Ξ ⊆ {Π ∪ ΠH(0)} , Π ⊆ {Ξ ∪ ΠH(0)}},

where ΠH(0) = {x ∈ Rn : ∥x∥ < H}, H ≥ 0.
The defined Hausdorff distance dH(Ξ,Π) is a metric for any nonempty closed sets in Rn. In addition,

the pair (Cn, dH) is a metric space, where Cn is the set of all nonempty closed sets in Rn.
We will denote by En the space of all functions φ : Rn → [0, 1] such that

1) φ is upper semicontinuous in the sense of Baire;
2) there exists an x0 ∈ R

n such that φ(x0) = 1;
3) u is fuzzy convex, i. e., φ(λx + (1 − λ)y) ≥ min{φ(x), φ(y)}, λ ∈ [0, 1];
4) the closure of the set {x ∈ Rn : φ(x) > 0} is a compact subset of Rn.

It is well known [20,26, 29] that, if a fuzzy set with a membership function φ is a fuzzy convex set,
then [φ]κ is convex in Rn for any κ ∈ [0, 1].

The distance between two sets φ,ϖ ∈ En will be given as d(φ,ϖ) = sup{|φ(x)−ϖ(x)| : x ∈ Rn}; also,
the least upper bound of the metric d on the space En is defined by d[φ,ϖ] = sup{dH([φ]κ, [ϖ]κ) : κ ∈

[0, 1]} for φ, ϖ ∈ En, and it is a metric in En.
For any two sets φ,ϖ ∈ En the element ι ∈ En such that φ = ϖ+ι, which, if it exists, is the Hukuhara

difference of φ and ϖ and is denoted by φ −ϖ.
The family of all nonempty compact convex subsets of Rn will be denoted by Pk(Rn).

The integral of a mapping F on a compact interval T = [t1, t2], t2 > t1 > 0 is denoted by
b∫

a
F(t) dt;

for any 0 < κ ≤ 1, it is given as∫
T

F(t) dt =
{ ∫

T

f̄ (t) dt | f̄ : T → Rn is a measurable selection for Fκ

}
.

The mapping F : T → En is said to be differentiable at t0 ∈ T if the value F′(t0) exists and F′(t0) ∈
En is such that both limits lim{[F(t0 + h)−F(t0)]h−1 : h→ 0+} and lim{[F(t0)−F(t0 − h)]h−1 : h→ 0+}
exist and are equal to F′(t0). The above limits are considered in the metric space (En, d).

If Fκ is differentiable, the mapping Fκ is differentiable in the sense of Hukuhara for all κ ∈ [0, 1]
and DHFκ(t) = [ F′(t) ]κ, where DHFκ is the Hukuhara-type derivative of Fκ.
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The family {DHFκ(t) : κ ∈ [0, 1]} determines an element F′(t) ∈ En. Also, if F : T → En is
differentiable at t ∈ T , then the element F′(t) is called the fuzzy derivative of F(t) at the point t.

More on the concepts of fuzzy sets and functions is available in [30–32] and some of the references
therein. For important results related to fuzzy differential equations, see [33–37].

3. Regularization procedure

Throughout the entire paper we consider the following fuzzy system with an uncertain parameter

du
dt
= f (t, u, α), u(t0) = u0, (3.1)

where u ∈ En2
; f ∈ C(R+ × En2

× S, En2
); En2

= En × En; α ∈ S is an uncertain parameter; S is a
compact set in Rd.

As it is stated in [26], the parameter vector α represents the uncertainty in system (3.1). It can have
a different nature and may represent different characteristics. For example, the uncertainty parameter α

(a) may describe an uncertain value of a certain physical parameter;
(b) may represent an estimate of an external disturbance;
(c) may describe an inaccurate measured value of the input effect of one of the subsystems on the

other one;
(d) may represent some nonlinear elements of the considered mechanical system that are too compli-

cated to be measured accurately;
(e) may be an indicator of the existence of some inaccuracies in the system (3.1);
(f) may be a union of the characteristics (a)–(e).

To regularize the system (3.1) with respect to the uncertain parameter α, in [26] we consider a
family of mappings fκ(t, v) defined by

fκ(t, v) = fM(t, v)κ + (1 − κ) fm(t, v), 0 ≤ κ ≤ 1, (3.2)

where
fm(t, v) = co

⋂
α∈S

f (t, v, α), S ⊆ Rd, (3.3)

fM(t, v) = co
⋃
α∈S

f (t, v, α), S ⊆ Rd. (3.4)

Now, we propose to consider the following regularized with respect to α ∈ S system of fuzzy
differential equations of the type

dv
dt
= fκ(t, v), v(t0) = v0, (3.5)

where fκ ∈ C(I × En2
, En2

), I = [t0, t0 + τ], t0 ≥ 0, τ > 0, κ ∈ [0, 1].
For the regularized system (3.5) we assume that fm(t, v), fM(t, v) ∈ C[R+ × En2

, En2
]. The solutions

of the initial value problem (IVP) (3.5) are weakly continuous mappings v : I → En2
which satisfy the

integral equation

v(t) = v0 +

t∫
t0

fκ(s, v(s)) ds, t ∈ I, κ ∈ [0, 1].

Electronic Research Archive Volume 31, Issue 10, 6089–6119.
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The proposed regularization scheme is a method that can help to reduce the analysis of the properties
of the fuzzy system (3.1) with the uncertain parameter α ∈ S to those of the regularized system (3.5).

4. Matrix-valued Lyapunov functions

We define a matrix-valued function

U(t, ·) = [ui j(t, ·)], i, j = 1, 2, (4.1)

with entries ui j ∈ R that correspond to the family of regularized equations (3.5) as follows:

1) If κ = 0, then the entry u11(t, v1) ∈ C(R+ × En2
, R+) corresponds to the fuzzy equation

dv1

dt
= fm(t, v1); (4.2)

2) If κ = 1, then u22(t, v2) ∈ C(R+ × En2
, R+) corresponds to the fuzzy equation

dv2

dt
= fM(t, v2); (4.3)

3) If 0 < κ < 1, then the entries u12(t, v) = u21(t, v) ∈ C(R+ × En2
, R) correspond to the fuzzy

regularized system
dv
dt
= fκ(t, v), (4.4)

where fκ ∈ C(R+ × En2
, En2

).

This way the fuzzy equations (4.2)–(4.4) become the base in the construction of the matrix-valued
Lyapunov-type function (4.1).

Example 4.1. As a very simple example of a matrix-valued Lyapunov function, consider a function
U(t, ·) with the following entries:

u11(t, v1) = d[v1, θ0]; u22(t, v2) = d[v2, θ0]; u12(t, v1, v2) = u21(t, v1, v2) = d[v1, v2],

where v1, v2 ∈ En2
and the state θ0 ∈ En2

is defined as

θ0(x) =
{

1, for x = 0,
0, for x ∈ Rn \ {0}.

Now, on the basis of the matrix function (4.1), and by means of a vector η ∈ R2
+, we construct a

scalar Lyapunov-type function as follows

V(t, v, η) = ηT U(t, v)η, (4.5)

where V ∈ C(R+ × En2
× R2

+, R+).
Note that, in general, the vector η can be defined in one of the following ways:

(a) η = y ∈ R2, y , 0;
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(b) η = ξ ∈ C(R2, R2
+), ξ(0) = 0;

(c) η = ψ ∈ C(R+ × R2, R2
+), ψ(t, 0) = 0;

(d) η ∈ R2
+, η > 0.

Together with the defined scalar function (4.5), we will also use the following vector function, given
by

L(t, v, η) = AU(t, v)η, (4.6)

where A is a constant (2 × 2) matrix, L = (L1,L2)T and L ∈ C(R+ × En2
× R2

+, R
2
+).

We will introduce the following concepts related to the function (4.1) based on the function (4.5).

Definition 4.2. The matrix-valued function U : R+ × En2
→ R2 is said to be

1) positive semi-definite if there exist a neighborhood D(ρ) of the state θ0, D(ρ) = {v ∈ En2
:

d[v, θ0] < ρ}, 0 < ρ < +∞ and a vector η ∈ R2
+ such that

(a) the function V(t, v, η) is continuous on R+ × D(ρ) × R2
+;

(b) the function V(t, v, η) is nonnegative for all (t, v, η) ∈ R+ × D(ρ) × R2
+;

(c) V(t, 0, η) = 0 for all t ∈ R+ and η ∈ R2
+;

2) positive definite if it is positive semi-definite and there exists a positive definite function w(v) :
D(ρ)→ R+ such that w(v) ≤ V(t, v, η) for all (t, v, η) ∈ R+ × D(ρ) × R2

+;
3) decreasing if there exists a positive definite function z(v) : D(ρ) → R+, such that V(t, v, η) ≤ z(v)

for all (t, v, η) ∈ R+ × D(ρ) × R2
+;

4) radially unbounded if d[v, θ0]→ ∞ implies that V(t, v, η)→ +∞ for all t ∈ R+ and η ∈ R2
+.

The notions of negative semi-definite and negative definite matrix-valued functions can be defined
analogously.

Together with the consideration of Lyapunov-type functions (4.5) and (4.6), we will also introduce
their total derivatives with respect to the regularized system (3.5), as follows:

D+V(t, v, η) = ηT D+U(t, v)η;

D+L(t, v, η) = AD+U(t, v)η,

where D+U(t, v) = lim sup{[U(t + h, v + h fκ(t, v)) − U(t, v)]h−1 : h→ 0+}.

Example 4.3. For the function considered in Example 4.1,

U(t, v) =
(

d[v1, θ0] d[v1, v2]
d[v1, v2] d[v2, θ0]

)
we have

D+U(t, v) =
(

D+d[v1, θ0] D+d[v1, v2]
D+d[v1, v2] D+d[v2, θ0]

)
,

where
D+d[v1, θ0] = lim

h→0+
sup

1
h
{d[v1 + h fm(t, v1), θ0] − d[v1, θ0]} ;

D+d[v2, θ0] = lim
h→0+

sup
1
h
{d[v2 + h fM(t, v2), θ0] − d[v2, θ0]} ;

D+d[v1, v2] = lim
h→0+

sup
1
h
{d[v1 + h fm(t, v1), v2 + h fM(t, v2)] − d[v1, v2]} .
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The application of the function U(t, v) and its total derivative allows for the investigation of the
dynamical properties of the fuzzy system with uncertain parameters, as given by (3.1) on the basis of
the simple fuzzy equations (4.2)–(4.4).

4.1. Scalar comparison principle

In this subsection, we will consider the family of regularized equations (3.5) for (t, v) ∈ R+ × D(ρ).
Let fκ ∈ C(R+×D(ρ), En2

) for any κ ∈ [0, 1] and the solution v(t) of the IVP (3.5) be defined on [t0,∞).
For the regularized system (3.5), we will present a scalar comparison principle by using the function
(4.5).

Theorem 4.4. Suppose that for the regularized system (3.5) there exist a matrix-valued function U(t, ·)
and a vector η ∈ R2

+ such that

1) The function V(t, v, η) ∈ C(R+ × D(ρ) × R2
+, R+) and there exists a constant L > 0 such that

|V(t, v1, η) − V(t, v2, η)| ≤ Ld[v1, v2], v1, v2 ∈ D(ρ), t ∈ R+, η ∈ R2
+;

2) There exists a function g(t, ω), g ∈ C(R2
+, R) such that, for any κ ∈ [0, 1]

D+V(t, v, η) ≤ g(t,V(t, v, η)), (t, v, η) ∈ R+ × D(ρ) × R2
+;

3) The maximal solution rM(t; t0, ω0) of the scalar comparison equation

dω
dt
= g(t, ω), ω(t0) = ω0 (4.7)

exists on [t0,∞).

Then, V(t0, v0, η) ≤ ω0 implies that

V(t, v(t), η) ≤ rM(t; t0, ω0), t ∈ [t0,∞).

Proof. Since the solution v(t) of the IVP (3.5) is defined on [t0,∞), for t ∈ [t0,∞), we set m(t) =
V(t, v(t), η) so that m(t0) ≤ ω0 and evaluate the difference m(t + h) −m(t) for a sufficiently small h > 0.
We have that

m(t + h) − m(t) = V(t + h, v(t + h), η) − V(t, v(t), η) = V(t + h, v(t + h), η)

−V(t + h, v(t) + h fκ(t, v(t)), η) + V(t + h, v(t)

+h fκ(t, v(t)), η) − V(t, v(t), η) ≤ Ld[v(t + h), v(t) + h fκ(t, v(t))]

+V(t + h, v(t) + h fκ(t, v(t)), η) − V(t, v(t), η), κ ∈ [0, 1].

From the above estimate, we obtain

D+m(t) = lim
h→0+

sup
1
h

[m(t + h) − m(t)]

≤ D+V(t, v(t), η) + L lim
h→0+

sup {d[v(t + h), v(t) + h fκ(t, v(t))]} . (4.8)
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Let v(t + h) = v(t) + z(t), where z(t) is the Hukuhara difference for a sufficiently small h > 0.
According to the properties of the metric d[u, v], we get

d[v(t + h), v(t) + h fκ(t, v(t))] = d
[
v(t) + z(t), v(t) + h fκ(t, v(t))

]
= d

[
z(t), h fκ(t, v(t))

]
= d

[
v(t + h) − v(t), h fκ(t, v(t))

]
,

and, hence
1
h

d[v(t + h), v(t) + h fκ(t, v(t))] = d
[v(t + h) − v(t)

h
, fκ(t, v(t))

]
. (4.9)

Taking the limit in (4.9), we obtain

lim
h→0+

sup
1
h
{d[v(t + h), v(t) + h fκ(t, v(t))]}

= lim
h→0+

sup
1
h

{
d
[v(t + h) − v(t)

h
, fκ(t, v(t))

]}
= d

[dv(t)
dt

, fκ(t, v(t))
]

(4.10)

along any solution v(t) of (3.5).
Taking into account (4.10), the estimate (4.8) takes the following form:

D+m(t) ≤ g(t,m(t)), m(t0) ≤ ω0, (4.11)

to which we apply Theorem 1.5.1 [14] and get

m(t) ≤ rM(t; t0, ω0)

for all t ≥ t0. This proves Theorem 4.4.

We will now state some corollaries of Theorem 4.4. The Hahn class K of continuous and strictly
increasing functions of the corresponding dimension that are zero at zero will be used [14].

Corollary 4.5. Suppose that, in Theorem 4.4, instead of condition 2, we have the following:

2′) D+V(t, v, η) ≤ 0, (t, v, η) ∈ R+ × D(ρ) × R2
+.

Then,
V(t, v(t), η) ≤ V(t0, v0, η), t ≥ t0.

Corollary 4.6. Suppose that, in Theorem 4.4, instead of condition 2, we have the following:

2′′) D+V(t, v, η) ≤ −a(ω(t, v)) + g(t,V(t, v, η)), (t, v, η) ∈ R+ × D(ρ) × R2
+,

where ω ∈ C(R+ × D(ρ), R+), a ∈ K and g(t, ω) is a function decreasing on ω for any t ∈ R+.
Then, V(t0, v0, η) ≤ ω0 implies that

V(t, v(t), η) +

t∫
t0

a[ω(s, v(s))] ds ≤ rM(t; t0, ω0), t ≥ t0, κ ∈ [0, 1].

Electronic Research Archive Volume 31, Issue 10, 6089–6119.
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4.2. Quasilinear fuzzy systems

We represent the regularized system (3.5) in the following form:

dv
dt
= Aκ(t)v + gκ(t, v), (4.12)

v(t0) = v0, (4.13)

where gκ ∈ C(R+ × En2
) and Aκ(t) : [t0,∞) → En2

for any value of κ ∈ [0, 1] is a semi-linear operator
such that

(a) Aκ(t)(u + v) = Aκ(t)u + Aκ(t)v, u, v ∈ En2
;

(b) Aκ(t)(νu) = νAκ(t)u, ν ∈ R+, u ∈ En2
.

Assume that the solution of the problem described by (4.12) and (4.13) is well defined for t ≥ t0

and the operator Aκ(t) is contracting, i.e., there exists 0 < γ < 1 such that

d[Aκ(t)u, Aκ(t)v] ≤ γd[u, v], u, v ∈ En2
. (4.14)

In addition, for a sufficiently small h > 0 the operator

Q(h, Aκ(t)) = I + hAκ(t) + h2A2
κ(t) + . . . + hnAn

κ(t) + . . .

exists for t ∈ R+, κ ∈ [0, 1] and u ∈ En2
, and it satisfies

lim
h→0

Q(h, Aκ(t))u = u. (4.15)

The comparison principle for the quasilinear regularized problem described by (4.12) and (4.13) is
represented as follows.

Theorem 4.7. Suppose that for the regularized system (4.12), there exists a scalar Lyapunov-type
function V(t, v, η) that satisfies the following conditions:

1) V(t, v, η) ∈ C(R+ ×D(ρ)×R2
+,R+) and there exists a continuous on R+ function L(t) ≥ 0 such that

|V(t, v1, η) − V(t, v2, η)| ≤ L(t)d[v1, v2], v1, v2 ∈ D(ρ), t ∈ R+, η ∈ R2
+;

2) There exists a function G(t, ω), G ∈ C(R2
+, R), such that for any κ ∈ [0, 1]

D+V(t, v, η) ≤ G(t,V(t, v, η)), (t, v, η) ∈ R+ × D(ρ) × R2
+;

3) The maximal solution rM(t; t0, ω0) of the comparison equation

dω
dt
= G(t, ω), ω(t0) = ω0 (4.16)

exists on [t0,∞).

Then, V(t0, v0, η) ≤ ω0 implies that

V(t, v(t), η) ≤ rM(t; t0, ω0), t ∈ [t0,∞). (4.17)
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The proof of Theorem 4.7 is obtained in a similar way as the proof of Theorem 4.4 taking into
account the fact that

Q(h, Aκ(t))v + hgκ(t, v) = v + hgκ(t, v) + h(Q(h, Aκ(t))v. (4.18)

From (4.18), we have the following for m(t) = V(t, v(t), η):

m(t + h) − m(t) ≤ L(t + h)d[v(t + h), v(t) + h(Aκ(t)v(t) + gκ(t, v(t)))]

+L(t + h)hd[Q(h, Aκ(t))Aκ(t)v(t), Aκ(t)v(t)] + V(t + h, Q(h, Aκ(t))v(t)

+hgκ(t, v(t)), η) − V(t, v(t), η), κ ∈ [0, 1].

The above estimate, (4.14), (4.15) and condition 2 of Theorem 4.7 yield

D+m(t) ≤ G(t,m(t)). (4.19)

Next, we apply Theorem 3.1.1 [14] to obtain (4.17).

Corollary 4.8. Suppose that, in Theorem 4.7, the functions V(t, v, η) = d[v, θ0] and G = G(t, d[v, θ0]),
t ∈ R+, v ∈ En2

, η ∈ R2
+, where θ0 ∈ En2

is the state defined in Example 4.1.
Then, d[v0, θ0] ≤ ω0 implies that

d[v(t), θ0] ≤ rM(t; t0, ω0), t ≥ t0, κ ∈ [0, 1].

4.3. Vector comparison principle

Recall that a function G(t, ω), G : R+ × R2
+ → R

2 is quasimonotonic with respect to its second
variable ω if ω1 ≤ ω2 and ωi1 = ωi2 for 1 ≤ i ≤ 2 imply that G(t, ω1) ≤ G(t, ω2) for any two
ω1, ω2 ∈ R

2
+ and t ∈ R+.

In the case that G(t, ω) = Aω, where A is a (2 × 2) matrix with entries ai j, the function G(t, ω) is
quasimonotonic if ai j ≥ 0 for i , j.

Theorem 4.9. Suppose that, for the regularized system (3.5), there exist a matrix-valued function U(t, ·)
and a vector η ∈ R2

+ such that the function (4.6) satisfies the following conditions:

1) L(t, v, η) ∈ C(R+ × D(ρ) × R2
+, R

2
+) and there exists a constant L > 0 such that

||L(t, v1, η) − L(t, v2, η)|| ≤ L||D[v1, v2]||, v1, v2 ∈ D(ρ), t ∈ R+, η ∈ R2
+,

where D[v1, v2] = (d[v1, u1], d[v2, u2])T and ||.|| is the vector norm in R2;
2) There exists a quasimonotonic with respect to ω function G(t, ω) ∈ C(R+ × R2

+,R
2), G(t, 0) = 0,

such that, for any κ ∈ [0, 1],

D+L(t, v, η) ≤ G(t,L(t, v, η)), (t, v, η) ∈ R+ × D(ρ) × R2
+; (4.20)

3) The maximal solution rM(t; t0, ω0) of the vector comparison equation

dω
dt
= G(t, ω), ω(t0) = ω0 (4.21)

exists on [t0,∞).
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Then, L(t0, v0, η) ≤ ω0 implies that

L(t, v(t), η) ≤ rM(t; t0, ω0), t ∈ [t0,∞), κ ∈ [0, 1].

The proof of Theorem 4.9 is similar to that of Theorem 4.4, so we omit it here.

Corollary 4.10. Suppose that, in Theorem 4.9, the function G = G(t, ω) = Aω, t ∈ R+, where A is a
(2 × 2) matrix with entries ai j ≥ 0 for i , j.

Then,
L(t, v(t), η) ≤ L(t0, v0, η)eA(t−t0), t ≥ t0, κ ∈ [0, 1].

5. Main stability analysis

Recall that the function diam [u(t)]κ is nondecreasing as t → ∞. Hence, the direct application of the
metric ∥u(t)∥ in the stability analysis of the regularized system (3.5) is not suitable for its dynamical
properties. For this reason, in our research we will introduce the following assumptions:

H1. For any value of the uncertain parameter α ∈ S the system (3.5) has a steady state θ0 such that
fκ(t, θ0) = θ0 for all t ∈ [t0,∞).

H2. For the initial value v0 ∈ En2
and any y0 ∈ En2

there exists a Hukuhara difference v0 − y0 = w0.
H3. The solution v(t) = v(t; t0, v0) of (3.5) exists for all t ≥ t0 and is unique for any κ ∈ [0, 1].

Next, we introduce the following stability notions for the steady state θ0.

Definition 5.1. The state θ0 of (3.5) is:

S1 equi-stable if, for any t0 ∈ R+ and ε > 0 there exists δ = δ(ε, t0) such that for any initial data
v0 ∈ En2

with d[v0, θ0] < δ we have that d[v(t; t0, v0), θ0] < ε for all t ≥ t0 and all κ ∈ [0, 1];
S2 uniformly stable if δ in S1 does not depend on t0;
S3 quasi-equi-asymptotically stable if for any t0 ∈ R+ and any ξ > 0 there exist δ0(t0, ξ) > 0 and

τ(t0, ξ) ∈ R+ such that d[v0, θ0] < δ0(t0, ξ) implies that d[v(t; t0, v0), θ0] < ξ for all t ≥ t0 + τ(t0, ξ)
and κ ∈ [0, 1];

S4 uniformly quasi-asymptotically stable if δ0 and τ in S3 are independent on t0;
S5 equi-asymptotically stable if S1 and S3 hold simultaneously;
S6 uniformly asymptotically stable if S2 and S4 hold simultaneously;
S7 uniformly exponentially stable if for an arbitrary solution v(t; t0, v0), we have

d[v(t), θ0] ≤ β(d[v0, θ0]) exp[−λ(t − t0)],

where β(d) : [0,R]→ R+ is nondecreasing on d for some R > 0 and λ > 0 is a constant.

Example 5.2. Consider on E2 the following fuzzy equation

dv
dt
= µv, v(0) = v0 ∈ E2, (5.1)

where (µ , 0) ∈ [−1, 1], µ = µ(κ), which we represent as follows:
dv1

dt
= µv2, v2 = v20,

dv2

dt
= µv1, v1 = v10

(5.2)
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for κ ∈ [0, 1]. At the same time, for an initial value v0 ∈ E2 on the level [v0]κ = [v10, v20]κ for κ ∈ [0, 1]
the general solution of (5.2) has the form{

[v1(t)]κ = 1
2 (v10 + v20)eµt + 1

2 (v10 − v20)e−µt,

[v2(t)]κ = 1
2 (v10 + v20)eµt − 1

2 (v10 − v20)e−µt (5.3)

for all 0 ≤ κ ≤ 1 and t ≥ 0.
It follows from (5.3) that at all κ-levels, the zero solution of (5.1) is unstable, even for sufficiently

small values of v10, v20 for any κ ∈ [0, 1]. At the same time, the zero solution is stable under some
additional conditions for the initial data [v0]κ = [v10, v20]κ. Particularly, if v10 + v20 = 0 for 0 < µ < 1 or
if v10 − v20 = 0 for −1 < µ < 0, and any κ ∈ [0, 1], the relations given by (5.3) imply that [v1(t)]κ and
[v2(t)]κ are decreasing for t → ∞. These conditions are equivalent to the existence of the Hukuhara
difference for [v10, v20]κ, κ ∈ [0, 1].

We will now establish some stability criteria for the stationary state θ0 of (3.5) based on a scalar
auxiliary function of the type (4.5). Functions of the class CK = {a ∈ C[R2

+,R+] : a(t, u) ∈ K for each
t ∈ R+ and a(t, ℘)→ ∞ as ℘→ ∞} will also be used.

Theorem 5.3. Suppose that, for the regularized system (3.5), conditions H1–H3 hold, and that there
exist a matrix-valued function U(t, ·) and a vector η ∈ R2

+ such that the function (4.5) satisfies the
following conditions:

1) V(t, v, η) satisfies condition 1 of Theorem 4.4;
2) There exist functions a ∈ K and b ∈ CK and constant positive definite (2 × 2) matrices A1 and A2

such that
aT (d[v, θ0])A1a(d[v, θ0]) ≤ V(t, v, η) ≤ bT (t, d[v, θ0])A2b(t, d[v, θ0]) (5.4)

for (t, v, η) ∈ R+ × D(ρ) × R2
+;

3)
D+V(t, v, η) ≤ 0, (t, v, η) ∈ R+ × D(ρ) × R2

+.

Then the state θ0 of (3.5) is equi-stable.

Proof. Under the condition 2) of Theorem 5.3, the estimate (5.4) can be represented as

λm(A1)a(d[v, θ0]) ≤ V(t, v, η) ≤ λM(A2)b(t, d[v, θ0]) (5.5)

for (t, v, η) ∈ R+ × D(ρ) × R2
+, where λm(A1) > 0 and λM(A2) > 0 are the minimal and maximal

eigenvalues of the matrices A1 and A2, respectively, and the comparison functions a ∈ K, b ∈ CK exist
such that

a(d[v, θ0]) ≤ aT (d[v, θ0])a(d[v, θ0])

and
b(t, d[v, θ0]) ≥ bT (t, d[v, θ0])b(t, d[v, θ0]).

Let 0 < ε < ρ and t0 ∈ R+ be given. We choose δ = δ(t0, ε) so that

λM(A2)b(t0, δ) < λm(A1)a(ε). (5.6)
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We will show that, for such a choice of δ, the stationary state θ0 of (3.5) is equi-stable. If this is not
true, then there exist a solution v∗(t; t0, v0) and a t1 > t0 such that, for κ ∈ [0, 1],

d[v∗(t1), θ0] = ε and d[v∗(t), θ0] ≤ ε < ρ, t0 ≤ t < t1. (5.7)

According to condition 3 of Theorem 5.3 and Corollary 4.5, we have

V(t, v∗(t), η) ≤ V(t0, v0, η) for all t0 ≤ t ≤ t1 and κ ∈ [0, 1]. (5.8)

Hence, taking into account the estimates (5.5) and (5.6), we get

λm(A1)a(ε) = λm(A1)a(d[v∗(t1), θ0]) ≤ V(t1, v∗(t1), η) ≤ V(t0, v0, η)

≤ λM(A2)b(t0, d[v0, θ0]) < λm(A1)a(ε).

The obtained contradiction shows that d[v0, θ0] < δ implies that d[ v(t; t0, v0), θ0 ] < ε for all t ≥ t0

and all κ ∈ [0, 1], which proves the theorem.

Theorem 5.4. Suppose that, for the regularized system (3.5), conditions H1–H3 hold, there exists a
function of the type (4.5) for which conditions 1 and 2 of Theorem 5.3 are satisfied and, instead of 3
we have the following:

3′) There exists a constant β > 0 such that

D+V(t, v, η) ≤ −βV(t, v, η), (t, v, η) ∈ R+ × D(ρ) × R2
+.

Then, the state θ0 of (3.5) is equi-asymptotically stable.

Proof. Since the conditions of Theorem 5.4 follow from the conditions of Theorem 5.3, the steady
state θ0 is equi-stable.

Let ε = ρ and δ0 = δ0(t0, ρ). From Theorem 5.3, we have that d[v0, θ0] < δ0 implies that d[v(t), θ0] <
ρ for all t ≥ t0 and κ ∈ [0, 1].

From condition 3′ of Theorem 5.4, we obtain

V(t, v(t), η) ≤ V(t0, v0, η) exp[−β(t − t0)], t ≥ t0, κ ∈ [0, 1].

For the given ε > 0 we choose

τ(t0, ε) =
1
β

ln
λM(A2)b(t0, δ0)
λm(A1)a(ε)

+ 1.

Hence, for any κ ∈ [0, 1]
λm(A1)a(d[v(t), θ0]) ≤ V(t, v(t), η)

≤ λM(A2)b(t0, δ) exp[−β(t − t0)] < λm(A1)a(ε), t ≥ t0 + τ(t0, ε).

From the above inequalities, for any initial data v0 ∈ En2
with d[v0, θ0] < δ0, we have that

d[ v(t; t0, v0), θ0 ] < ε for t ≥ t0 + τ(t0, ε) and any κ ∈ [0, 1], which proves Theorem 5.4.
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Theorem 5.5. Suppose that, for the regularized system (3.5), conditions H1–H3 hold, and that there
exist a matrix-valued function U(t, ·) and a vector η ∈ R2

+ such that the function (4.5) satisfies the
following conditions:

1) V(t, v, η) satisfies condition 1 of Theorem 4.4 on R+ × (D(ρ) ∩ Dc(σ)) × R2
+, where Dc(σ) is the

complement of D(σ) for 0 < σ < ρ;
2) V(t, v, η) satisfies condition 2 of Theorem 5.3 on R+ × (D(ρ) ∩ Dc(σ)) × R2

+ for the functions
a, b ∈ K;

3) V(t, v, η) satisfies condition 3 of Theorem 5.3 on R+ × (D(ρ) ∩ Dc(σ)) × R2
+.

Then the state θ0 of (3.5) is uniformly stable.

Proof. Condition 2) of Theorem 5.5 leads to

λm(A1)a(d[v, θ0]) ≤ V(t, v, η) ≤ λM(A2)b(d[v, θ0]), (t, v, η) ∈ R+ × (D(ρ) ∩ Dc(σ)) × R2
+.

Let 0 < ε < ρ and t0 ∈ R+ be given. We can choose δ = δ(ε) > 0 so that

λM(A2)b(δ) < λm(A1)a(ε). (5.9)

We will show that for the above choice of δ > 0 the stationary state θ0 of the regularized system
(3.5) is uniformly stable. If this is not true, then there exist a solution v(t) of (3.5) and t1, t2, where
t2 > t1 > t0, such that d[v(t1), θ0] = δ, d[v(t2), θ0] = ε and δ ≤ d[v(t), θ0] ≤ ε < ρ for t ∈ [t1, t2] and
κ ∈ [0, 1].

Set σ = δ, and, according to the condition 3 of Theorem 5.5, we have

V(t2, v(t2), η) ≤ V(t1, v(t1), η).

From the above inequality, we get

λm(A1)a(ε) = λm(A1)a(d[v(t2), θ0]) ≤ V(t2, v(t2), η) ≤ V(t1, v(t1), η)

≤ λM(A2)b(d[v(t1), θ0]) = λM(A2)b(δ) < λm(A1)a(ε).

The obtained contradiction proves Theorem 5.5.

Theorem 5.6. Suppose that, for the regularized system (3.5), conditions H1–H3 hold, there exists a
function of the type (4.5) for which conditions 1 and 2 of Theorem 5.5 are satisfied and, instead of 3
we have the following:

3′′) There exists a function c ∈ K such that

D+V(t, v, η) ≤ −c(d[v, θ0]), (t, v, η) ∈ R+ × (D(ρ) ∩ Dc(σ)) × R2
+.

Then, the state θ0 of (3.5) is uniformly asymptotically stable.

Proof. Since all conditions of Theorem 5.5 are satisfied, the state θ0 of (3.5) is uniformly stable. Then,
for ε = ρ and δ0 = δ0(ρ), d[v0, θ0] < δ0 implies that d[v(t), θ0] < ρ for all t ≥ t0 and κ ∈ [0, 1].

To prove Theorem 5.6, we have to show that the state θ0 is attractive, i.e., that there exists a t∗ ≥ t0

such that d[v(t∗), θ0] < δ for t0 ≤ t∗ ≤ t0 + τ, where τ = 1 + λM(A2)b(δ0)
λm(A1)a(δ) .
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Suppose that the above is not true and δ ≤ d[v(t), θ0] for t0 ≤ t ≤ t0 + τ . Then, it follows from
3′′ that

V(t, v(t), η) ≤ V(t0, v0, η) −

t∫
t0

c(d[v(s), θ0]) ds, t0 ≤ t ≤ t0 + τ.

From the last inequality for the given choice of τ, we have

0 ≤ V(t0 + τ, v(t0 + τ), η) ≤ λM(A2)b(δ0) − c(δ)τ < 0.

The obtained contradiction proves that d[v0, θ0] < δ implies that d[v(t; t0, v0), θ0] < ε for t ≥ t0 + τ,
i.e., the state θ0 is attractive. Theorem 5.6 is proved.

In the next result, we will need the following concept.

Definition 5.7. Two functions a, b ∈ K are said to be of the same order of magnitude if there exist
positive constants k1 and k2 such that k1a(r) ≤ b(r) ≤ k2a(r) for all r ∈ R+.

Theorem 5.8. Suppose that, for the regularized system (3.5), conditions H1–H3 hold, and that there
exist a matrix-valued function U(t, ·) and a vector η ∈ R2

+ such that the function (4.5) satisfies the
following conditions:

1) V(t, v, η) satisfies condition 1 of Theorem 4.4;
2) There exist a comparison function σ1 ∈ K, a positive constant ∆1 and a (2 × 2) matrix function

F1(θ), θ ∈ R such that

∆1dρ[v, θ0] ≤ V(t, v, η) ≤ σT
1 (d[v, θ0])F1(θ)σ1(d[v, θ0])

for (t, v, η) ∈ R+ × D(ρ) × R2
+ and ρ > 1;

3) There exists a comparison function σ2 ∈ K and a (2 × 2) matrix function F2(θ), θ ∈ R such that

D+V(t, v, η) ≤ σT
2 (d[v, θ0])F2(θ)σ2(d[v, θ0]), (t, v, η) ∈ R+ × D(ρ) × R2

+.

Then, if the matrix F1(θ)(θ , 0) ∈ R2
+ is positive definite, the matrix F2(θ)(θ , 0) ∈ R2

+ is negative
definite and the comparison functions σ1, σ2 are of the same order of magnitude, the state θ0 of (3.5)
is uniformly exponentially stable.

Proof. We can represent the upper estimate of V(t, v, η) in condition 2) of Theorem 5.8 as follows

V(t, v, η) ≤ λM(F1)σT
1 (d[v, θ0])σ1(d[v, θ0]), (5.10)

where λM(F1) > 0 is the maximal eigenvalue of the matrix F1.
Since the function σ1 ∈ K, there exists a function γ ∈ K such that

γ(d[v, θ0]) ≥ σT
1 (d[v, θ0])σ1(d[v, θ0]). (5.11)

From (5.10) and (5.11), it follows that condition 2 of Theorem 5.8 takes the following form:

∆1dρ[v, θ0] ≤ V(t, v, η) ≤ λM(F1)γ(d[v, θ0]), (t, v, η) ∈ R+ × D(ρ) × R2
+. (5.12)
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We represent condition 3 of Theorem 5.8 in the following form:

D+V(t, v, η) ≤ λM(F2)π(d[v, θ0]), (5.13)

where the function π ∈ K exists such that

π(d[v, θ0]) ≥ σT
2 (d[v, θ0])σ2(d[v, θ0]).

Since the functions γ and π are of the same order of magnitude, there exist constants K1 > 0 and
K2 > 0 such that

K1γ(d[v, θ0]) ≤ π(d[v, θ0]) ≤ K2γ(d[v, θ0]). (5.14)

From (5.12) and (5.13) for any κ ∈ [0, 1], we obtain

V(t, v(t), η) ≤ V(t0, v0, η) exp[χ(t − t0)] (5.15)

where χ = λM(F2)λ−1
M (F1), χ < 0.

Next, the estimate (5.15) and condition 2 of Theorem 5.8 imply that

d[v(t), θ0] ≤ ∆
− 1
ρ

1 λ
1
ρ

M(F1)γ
1
ρ (d[v0, θ0]) exp[

χ

ρ
(t − t0)], t ≥ t0, κ ∈ [0, 1]. (5.16)

Hence, for

β(·) = ∆
− 1
ρ

1 λ
1
ρ

M(F1)γ
1
ρ (d[v0, θ0]) and λ = −

χ

ρ
,

we have an exponential type convergence of an arbitrary solution vκ(t) of (3.5) to the state θ0, which
proves the theorem.

We will next establish stability criteria by means of the vector comparison function of type (4.6).

Theorem 5.9. Suppose that, for the regularized system (3.5), conditions H1–H3 hold, and that there
exist a matrix-valued function U(t, ·) and a vector η ∈ R2

+ such that the function (4.6) satisfies the
following conditions:

1) L(t, v, η) satisfies all conditions of Theorem 4.9;
2) There exist vector functions a, b ∈ K and constant positive definite (2 × 2) matrices A1 and A2

such that for the function

V0(t, v, η) =
2∑

i=1

Li(t, v, η) (5.17)

the inequalities

aT (d[v, θ0])A1a(d[v, θ0]) ≤ V0(t, v, η) ≤ bT (d[v, θ0])A2b(d[v, θ0]) (5.18)

hold for (t, v, η) ∈ R+ × D(ρ) × R2
+.

Then, the stability properties of the zero solution of the vector comparison equation (4.21) imply
the corresponding stability properties of the state θ0 of (3.5).
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Proof. We will study the equi-asymptotic stability of the steady state θ0 of the regularized system (3.5).
Let 0 < ε < ρ and t0 ∈ R+ be given. Suppose that the zero solution of (4.21) is equi-asymptotically

stable. Hence, it is stable, and for given λm(A1)a(ε) > 0 and t0 ∈ R+ there exists δ1 = δ1(t0, ε) > 0
such that

2∑
i=1

ωi0 < δ1 (5.19)

implies that
2∑

i=1

rMi(t; t0, ω0) < λm(A1)a(ε), t ≥ t0,

where rM(t; t0, ω0) = (rM1(t; t0, ω0), rM2(t; t0, ω0))T and a ∈ K exists such that aT (d[v, θ0])a(d[v, θ0]) ≥
a(d[v, θ0]) on D(ρ).

We set ω0 = V0(t0, v0, η) and choose δ = δ(t0, ε) > 0 so that

λM(A2)b(δ) < λm(A1)a(ε). (5.20)

We will prove that if d[ω0, θ0] < δ, then d[v(t; t0, v0), θ0] < ε for all t ≥ t0 and all κ ∈ [0, 1], where
v(t; t0, v0) is an arbitrary solution of (3.5).

If the above assertion is not true, then there exists t1 > t0 such that

d[v(t1; t0, v0), θ0] = ε and d[v(t; t0, v0), θ0] ≤ ε < ρ, 0 ≤ t ≤ t1.

Since L(t, v, η) satisfies all conditions of Theorem 4.9, we have

L(t, v(t), η) ≤ rM(t; t0, ω0), t ∈ [t0, t1], κ ∈ [0, 1]. (5.21)

From (5.18), we have

V0(t0, v0, η) ≤ λM(A2)b(d[v0, θ0]) < λM(A2)b(δ) < δ1

and, hence

λm(A1)a(ε) ≤ V0(t1, v(t1), η) ≤ r0(t1; t0, ω0) < λM(A2)b(ε) < λm(A1)a(ε), (5.22)

where r0(t1; t0, ω0) =
2∑

i=1
rMi(t; t0, ω0).

The contradiction (5.22) proves that the state θ0 of the regularized system (3.5) is equi-stable.
We will next prove that it is attractive. Let ε = ρ and δ̂0 = δ(t0, ρ) >

0. We choose 0 < σ < ρ and for given λm(A1)a(σ) and t0 ∈ R+ choose
δ∗1 = δ

∗
1(t0, σ) > 0 and τ = τ(t0, σ) > 0 so that

2∑
i=1

ωi0 < δ
∗
1 (5.23)

implies that
2∑

i=1

rMi(t; t0, ω0) < λm(A1)a(σ), t ≥ t0 + τ.
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Let ω0 = V0(t0, v0, η). Determine δ∗0 = δ∗0(t0, σ) > 0 so that λM(A2)b(δ∗0) < δ∗1. Choose δ0 =

min(δ∗1, δ
∗
0) and assume that d[ω0, θ0] < δ0. Hence, d[v(t; t0, v0), θ0] < ρ for all t ≥ t0 and κ ∈ [0, 1], and

therefore, the estimate (5.21) is satisfied for all t ≥ t0, κ ∈ [0, 1]. Suppose that there exists a sequence
{tk}, tk ≥ t0 + τ, tk → +∞ as k → +∞ and σ ≤ d[v(tk), θ0], where v(t) is an arbitrary solution of (3.5)
with initial data v0 ∈ En such that d[v0, θ0] < δ0, and such that the Hukuhara difference u0 − w0 = v0

exists.
Finally, from (5.18) and (5.23), we have

λm(A1)a(σ) ≤ V0(tk, vκ(tk), η) ≤ r0(tk, t0, ω0) < λm(A1)a(σ). (5.24)

The obtained above contradiction (5.24) proves that the stationary state θ0 of (3.5) is attractive and,
therefore, quasi-asymptotically stable.

The other stability properties can be proved similarly by linking the dynamic properties of the
regularized fuzzy system (3.5) and these of the comparison system (4.21).

Remark 5.10. The established stability criteria show that the idea of using a family of mappings and
regularized fuzzy systems of type (3.1) with respect to uncertain parameters greatly benefits their stabil-
ity analysis. In fact, due to some complications in the study of fuzzy differential systems with uncertain
parameters, the proposed results in this direction are very few [20]. Hence, the proposed regularization
procedure complements such published accomplishments and, due to the offered advantages is more
appropriate for applications. In addition, the modifications of the Lyapunov theory-named matrix-
valued Lyapunov functions further extend the advantages of the proposed strategy over the classical
Lyapunov function strategies.

Example 5.11. We consider a fuzzy Cohen–Grossberg neural network of Lotka-Volterra type with two
interacting species 

du1

dt
=

r1

K1
u1(t)

(
K1 − u1(t) − e12α12u2(t)

)
,

du2

dt
=

r2

K2
u2(t)

(
K2 − u2(t) − e21α21u1(t)

)
,

(5.25)

where t ≥ 0; u1(t) and u2(t) are the populations of the two species at time t, respectively, r1 and r2 are
intrinsic growth rates; K1 and K2 are the carrying capacities of the environment; e12 and e21 are inter-
specific coefficients. All parameters r1, r2, K1, K2 and e12 and e21 are positive numbers. The uncertain
parameters are α12 and α21, which can take values from the interval [0, 1] and represent the interaction
strength between the species.

Introduce the notations

f1(t, u, α) =
r1

K1
u1(t)

(
K1 − u1(t) − e12α12u2(t)

)
,

f2(t, u, α) =
r2

K2
u2(t)

(
K2 − u2(t) − e21α21u1(t)

)
,

f (t, u, α) = ( f1, f2)T , α = (α12, α21)T , u(t) = (u1(t), u2(t))T .

Then, the model (5.25) has the following form:

du
dt
= f (t, u, α), (5.26)
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where u ∈ E2 and f ∈ C(R+ × E2 × S, E2), S = [0, 1] × [0, 1].
It is easy to show that for (5.25) there exists an equilibrium uε at

uε1 =
K1 − K2e12α12

1 − e12e21α12α21
,

uε2 =
K2 − K1e21α21

1 − e12e21α12α21
,

(5.27)

which is positive for all permissible values of α12 and α21 whenever the carrying capacity ratio K1/K2

satisfies the condition

e12α12 <
K1

K2
<

1
e21α21

.

Now, we consider a regularized system that corresponds to (5.26) and is given by

dv
dt
= fκ(t, v), v(t0) = v0, (5.28)

where fκ ∈ C(R+ × E2, E2) and fm(t, v) = ∅ and fκ(t, v) = fM(t, v)κ, κ ∈ [0, 1].
Denote the steady state of (5.28) by θ0. Suppose that there exists a function c̃(t) such that

(i) d
[
fκ(t, v), θ0

]
≤ c̃(t)d[v, θ0] for all κ ∈ [0, 1] and (t, v) ∈ R+ × E2;

(ii)
∞∫
0

c̃(s)ds ≤ +∞.

If for the corresponding regularized equation (5.8) all conditions H1–H3 are satisfied, then (i) and
(ii) guarantee the uniform stability of its stationary solution θ0 ∈ E2.

In fact, the Lyapunov-type function V(t, v, η) = d[v, θ0] satisfies all conditions of Theorem 5.5.
More precisely, V(t, v, η) = ηT U(t, v)η, where the matrix U(t, v) has entries ui j(t, v), i, j = 1, 2 defined
as u11(t, v) = u22(t, v) = 1

2d[v, θ0], u12(t, v) = u21(t, v) = 0 and η = (1, 1)T .
In addition, for any sufficiently small h > 0 we have

V (t, v + h fκ(t, v), η) = d
[
v + h fκ(t, v), θ0

]
≤ d[v, θ0] + hd

[
fκ(t, v), θ0

]
≤ d[v, θ0] + hc̃(t)d[v, θ0].

From the definition of the derivative D+V(t, v, η) and (i), we get

D+V(t, v(t), η) ≤ c̃(t)d[v, θ0] for any v ∈ E2.

Since, condition (ii) is sufficient [18, 19] to guarantee the uniform stability of the zero solution of

dm(t)
dt
= c̃(t)m(t), m(t0) = m0 ≥ 0, (5.29)

then according to the comparison principle, the state θ0 of the regularized system (5.28) is uniformly
stable, too.
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6. Stability analysis for autonomous comparison problems

In this section, first, under the conditions of Theorem 5.9, we will analyze the stability of the zero
solution of the comparison system (4.21) for the case that the vector function G(t, ω) is autonomous.
In this case, the comparison system is in the following form:

dω
dt
= Ḡ(ω), ω(t0) = ω0 ≥ 0, (6.1)

where Ḡ ∈ C(R2
+,R

2), Ḡ = (Ḡ1, Ḡ2)T , ω = (ω1, ω2)T and the stability problems of the zero solution
have effective resolutions under the following assumptions:

(i) The function Ḡ is quasimonotonic and nondecreasing with respect to ω on

K̃ =
{
ω ∈ R2 : ωi ≥ 0, i = 1, 2

}
;

(ii) There exists a local solution ω(t) of the IVP (6.1) which is uniquely determined by the given
initial data;

(iii) There exists a neighborhood D∗ of the state ω = 0 such that, for any ω ∈ D
∗
, we have that

Ḡ(ω) , 0 for ω , 0 and Ḡ(0) = 0.

In what follows, uniform asymptotic stability criteria will be established.

Theorem 6.1. Suppose that, for the regularized system (3.5), conditions H1–H3 hold, and that there
exist a matrix-valued function U(t, ·) and a vector η ∈ R2

+ such that the function (4.6) satisfies the
following conditions:

1) L(t, v, η) satisfies condition 1 of Theorem 4.9 and condition 2 of Theorem 5.9;
2) L(t, v, η) is such that, for any κ ∈ [0, 1], we have

D+L(t, v, η) ≤ Ḡ(L(t, v, η)), (t, v, η) ∈ R+ × D(ρ) × R2
+. (6.2)

3) For any δ > 0, the system of inequalities

Ḡi(ω1, ω2) < 0, i = 1, 2

has a unique solution ω1, ω2 such that 0 < ωi < δ for i = 1, 2.

Then the state θ0 of (3.5) is uniformly asymptotically stable.

Proof. Under condition 3 of Theorem 6.1, the isolated zero solution of the comparison system (6.1) is
uniformly asymptotically stable [18, 19]. Further, applying the reasoning from the proof of Theorem
5.9, we complete the proof of Theorem 6.1.

Theorem 6.1 and Corollary 4.10 imply the validity of the following result.

Corollary 6.2. Suppose that, in Theorem 6.1, the function Ḡ = Ḡ(ω) = Aω and t ∈ R+, where A is a
(2 × 2) matrix with entries ai j ≥ 0 for i , j.

Then, if the system of inequalities
2∑

j=1

ai jω j < 0, i = 1, 2

has a unique solution ω1, ω2 such that 0 < ω j for all j = 1, 2, then the state θ0 of the regularized fuzzy
system (3.5) is uniformly asymptotically stable
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Next, we suppose that

Enm
= En1 × . . . × Enm and Eni ∩ En j = ∅

for ni , n j, i, j ∈ [1,m]. We will represent an autonomous regularized system of the type (3.5) on
En1 × . . . × Enm in the following form:

dvi/dt = f i
κ(vi) + gi

κ(v1, . . . , vm), (6.3)

where f i
κ ∈ C(Eni , Eni) and gi

κ ∈ C(En1 × . . . × Enm , Eni) for κ ∈ [0, 1], i = 1, 2, . . . ,m.
We will apply the following two metrics

d0[u, v] =
m∑

i=1

d[ui, vi], where ui, vi ∈ Eni , (6.4)

and
D[u, v] = (d[u1, v1], d[u2, v2], . . . , d[um, vm])T , (6.5)

where D ∈ Rm
+ and u, v ∈ Enm

. Note that the use of the measure (6.4) is related to the following
condition

d0[ fκ(u), fκ(v)] =
m∑

i=1

d[ f i
κ(u), f i

κ(v)] ≤ g(d0[u, v]) for all κ ∈ [0, 1], (6.6)

where g ∈ C(R+,R+).
The comparison principle for the autonomous regularized system (6.3) is represented as follows.

Theorem 6.3. Suppose that, for the regularized system (6.3), there exists a Lyapunov-type function
L(v, η) that satisfies the following conditions:

1) L(v, η) ∈ C(Enm
× R2

+,R
m
+) and there exists a constant (m × m)−matrix P with real entries such

that
||L(v1, η) − L(v2, η)|| ≤ |P|||D[v1, v2]||

for v1, v2 ∈ Enm
, η ∈ R2

+, where ||.|| is the norm in Rm and |.| is the corresponding matrix norm;
2) There exists a family G(ω), G ∈ C(Rm

+ , R
m), such that, for any κ ∈ [0, 1]

D+L(v, η) ≤ G(L(v, η)), v ∈ Enm
, η ∈ R2

+;

3) The maximal solution rM(t, t0, ω0) of the comparison equation

dω
dt
= G(ω), ω(t0) = ω0 (6.7)

exists on [t0,∞).

Then, L(v0, η) ≤ ω0 implies that

L(v(t), η) ≤ rM(t; t0, ω0), t ∈ [t0,∞). (6.8)
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The steps of the proof of Theorem 6.3 are identical to those of the proof of Theorem 2.17 [19].
For the family of equations (6.3), the following result, whose proof is similar to the proof of Theo-

rem 5.9, is valid.

Theorem 6.4. Suppose that for the system (6.3) there exists a vector Lyapunov-type function L(v, η)
such that the following holds:

1) L(v, η) satisfies all conditions of Theorem 6.4 for v ∈ D̃(ρ), where D̃(ρ) = {v ∈ Enm
: d0[v, θ0] < ρ}

and η ∈ R2
+;

2) There exist vector functions a, b ∈ K and constant positive definite (m × m) matrices A1 and A2

such that, for the function

L0(v, η) =
m∑

i=1

Li(v, η) (6.9)

for v ∈ D̃ρ), η ∈ R2
+, we have

aT (d0[v, θ0])A1a(d0[v, θ0]) ≤ L0(v, η) ≤ bT (d0[v, θ0])A2b(d0[v, θ0]). (6.10)

Then the stability properties of the zero solution of the vector comparison equation (6.7) with
Gκ(0) = 0 imply the corresponding stability properties of the state θ0 of (6.3).

Example 6.5. In this example, we will use functions a ∈ K such that a → ∞ as their variable ap-
proaches ∞. Such a class of functions will be denoted as KR. Consider Eq (6.3) under the following
assumptions:

1) There exist functions Li(v, η) ∈ C(Enm
× R2

+,R+) and ψi1, ψi2 ∈ KR, i = 1, 2, . . . ,m, such that

ψi1(d0[vi, θ0]) ≤ Li(v, η) ≤ ψi2(d0[vi, θ0]);

2) For all i, j = 1, 2, . . . ,m, there exist constants σi(κ) ∈ R and ai j(κ) such that

(a) D+Li(v, η) ≤ σi(κ)ψi3(d0[vi, θ0]) with respect to the solutions of the family of equations

dvi/dt = fκ(vi), i = 1, 2, . . . ,m, κ ∈ [0, 1]; (6.11)

(b) D+Li(v, η) ≤ ψ
1
2
i3(d0[vi, θ0])

m∑
j=1

ai j(κ)ψ
1
2
j (d0[vi, θ0])

on the connection function gi
κ(v1, . . . , vm) between subsystems of (6.11) for any κ ∈ [0, 1],

i, j = 1, 2, . . . ,m.

From 1) and 2), for the function V(v, η) = bTL(v, η), b ∈ Rm
+ , we have

D+V(v, η) ≤ ψT
3 (d0[v, θ0])S̃ψ3(d0[v, θ0]),

where ψ3 =

(
ψ

1
2
13(d0[v1, θ0]), . . . , ψ

1
2
m3(d0[vm, θ0])

)T
, S̃ = [si j(κ)], i, j = 1, 2, . . . ,m, κ ∈ [0, 1],

si j(κ) =
{

bi(σi(κ) + ai j(κ)) for i = j,
1
2 (biai j(κ) + b ja ji(κ)) for i , j.
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If the matrix M = 1
2 (S̃ T (κ) + S̃ (κ)) is positive definite for all κ ∈ [0, 1], then

D+V(v, η) ≤ λM(M)ψ(d0[v, θ̂0]), (6.12)

where λM(M) is the maximal eigenvalue of M for any κ ∈ [0, 1] and the function ψ ∈ K exists such
that ψT

3 (d0[v, θ0])ψ3(d0[v, θ0]) ≤ ψ(d0[v, θ0]). Condition 1) and (6.12) imply that the stationary state θ0

of (6.3) is uniformly asymptotically stable.

7. Boundedness results

Consider the fuzzy system (3.1) and by means of the regularization process transform it to a regu-
larized system of the following type:

dv
dt
= fκ(t, v) = gκ(t, v) + hκ(t, v), (7.1)

v(t0) = v0, v0 ∈ En2
, (7.2)

where fκ(t, v) is defined by (3.2) for all κ ∈ [0, 1], gκ, hκ ∈ C(R+ × En2
, En2

), hκ(t, v) , 0 for v = 0 and
t ∈ R+.

For the above fuzzy system (7.1) ,assume that there exist a unique steady state θ0 and functions f̃ (t)
and m̃(t) that are positive and integrable on any finite interval in R+ such that the following holds:

H4. For any κ ∈ [0, 1] and (t, v) ∈ R+ × En2
,

d[gκ(t, v), θ0] ≤ f̃ (t)d[v, θ0];

H5. For any κ ∈ [0, 1] and (t, v) ∈ R+ × En2
and k > 1

d[hκ(t, v), θ0] ≤ m̃(t)dk[v, θ0];

H6. For all t ≥ t0, t0 ∈ R+

Φ(t0, t) = (k − 1)dk−1[v0, θ0]

t∫
t0

m̃(s) exp

(k − 1)

s∫
t0

f̃ (τ)dτ

 ds < 1.

Now, the goal of our investigations is to obtain boundedness criteria for the family of solutions v(t)
of the set of fuzzy differential equations (7.1) for any κ ∈ [0, 1].

Lemma 7.1. Suppose that, for the system (7.1), conditions H4–H6 hold for all t ∈ [t0, a). Then, for the
function V(t, v, η) = d[v, θ0], the estimate

d[v(t), θ0] ≤ d[v0, θ0] exp


t∫

t0

f̃ (s)ds

 (1 − Φ(t0, t))−
1

k−1 (7.3)

is satisfied for all t ∈ [t0, a).
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Proof. Without loss of generality, we can consider the function V(t, v, η) = d[v, θ0] for d[v, θ0] ≥ K∗,
where K∗ is sufficiently large. We have that

K1d[v, θ0] ≤ V(t, v, η) ≤ K2d[v, θ0] (7.4)

for any 0 < K1 < K2 and all v ∈ En2
.

For the total derivative of the function V(t, v, η) with respect to system (7.1) from H4 and H5, we
obtain

D+V(t, v, η) ≤ f̃ (t)d[v, θ0] + m̃(t)dk[v, θ0] (7.5)

for any (t, v) ∈ R+ × En2
, η = (1, 1)T and k > 1.

From the above estimate, we get

d[v(t), θ0] ≤ d[v0, θ0] +

t∫
t0

( f̃ (s)d[v(s), θ0] + m̃(s)dk[v(s), θ0])ds, t ∈ [t0, a). (7.6)

Set z(t) = V(t, v(t), η) = d[v(t), θ0]. Then, z(t0) = d[v0, θ0] and the estimate (7.6) has the following
form:

z(t) ≤ z(t0) +

t∫
t0

(
f̃ (s)z(s) + m̃(s)zk(s)

)
ds

= z(t0) +

t∫
t0

(
f̃ (s) + m̃(s)zk−1(s)

)
z(s)ds, t ∈ [t0, a). (7.7)

We apply the Gronwall-Bellman inequality to the above estimate and get

z(t) ≤ z(t0) exp
( t∫

t0

(
f̃ (s) + m̃(s)zk−1(s)

)
ds

)
. (7.8)

The estimate (7.8) leads to

zk−1(t) ≤ zk−1(t0) exp
(
(k − 1)

t∫
t0

(
f̃ (s) + m̃(s)zk−1(s)

)
ds

)
. (7.9)

We multiply both sides of (7.9) by the negative expression

−(k − 1)m̃(t) exp
(
− (k − 1)

t∫
t0

m̃(s)zk−1(s) ds
)
,

and we obtain

−(k − 1)m̃(t)zk−1(t) exp
(
− (k − 1)

t∫
t0

m̃(s)zk−1(s) ds
)
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≥ −(k − 1)zk−1(t0)m̃(t) exp
(
(k − 1)

t∫
t0

f̃ (s) ds
)
.

Hence,

d
dt

(
exp

(
− (k − 1)

t∫
t0

m̃(s)zk−1(s) ds
))

≥ −(k − 1)zk−1(t0)m̃(t) exp
(
(k − 1)

t∫
t0

f̃ (s) ds
)
. (7.10)

From (7.10), we obtain

exp
(
− (k − 1)

t∫
t0

m̃(s)zk−1(s) ds
)

≥ 1 − (k − 1)zk−1(t0)

t∫
t0

m̃(s) exp
(
(k − 1)

s∫
t0

f̃ (τ) dτ
)
ds. (7.11)

The assumption H6 and (7.11) lead to

exp
(
(k − 1)

t∫
t0

m̃(s)zk−1(s) ds
)
≤ Φ−1(t, t0) for all t ∈ [t0, a).

Considering (7.9) and (7.10), we find that

zk−1(t) ≤

zk−1(t0) exp

(k − 1)
t∫

t0

f̃ (s)ds


1 − (k − 1)zk−1(t0)

t∫
t0

m̃(s) exp

(k − 1)
s∫

t0

f̃ (τ)dτ

 ds

. (7.12)

Finally, (7.8) and (7.12) imply (7.3).

We introduce the following boundedness definitions [14, 20].

Definition 7.2. The family of solutions v(t) = v(t; t0, v0) of the initial value problem (7.1) and (7.2) is

B1 bounded if there exists a constant r > 0 such that, for any t0 ∈ R+ and v0 ∈ En2
, we have that

d[v(t; t0, v0), θ0] < r for all t ≥ t0 and all κ ∈ [0, 1], where r may depend on any solution of the set
of equations given by (7.1);

B2 equi-bounded if, for any t0 ∈ R+ and δ > 0, there exists r = r(t0, δ) such that, for any initial data
v0 ∈ En2

, d[v0, θ0] < δ implies that d[v(t; t0, v0), θ0] < r for all t ≥ t0 and all κ ∈ [0, 1];
B3 uniformly bounded if r in B2 does not depend on t0;
B4 quasi-equi-ultimately bounded with a bound r̄ if there exists r̄ > 0 and, for any δ0 > 0, there

exists τ = τ(t0, δ) > 0 such that d[v0, θ0] < δ0 implies that d[v(t; t0, v0), θ0] < r̄ for all t ≥ t0 + τ

and κ ∈ [0, 1];
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B5 quasi-uniformly ultimately bounded with a bound r̄ if τ in B4 is independent on t0;
B6 equi-ultimately bounded with a bound r̄ if B2 and B4 hold simultaneously;
B7 uniformly ultimately bounded with a bound r̄ if B3 and B5 hold simultaneously;
B8 equi-stable in the Lagrange sense if B2 and S3 hold simultaneously;
B9 uniformly stable in the Lagrange sense if B3 and S4 hold simultaneously.

Theorem 7.3. Assume that, for the set of fuzzy equations given by (7.1), the conditions of Lemma 7.1
are satisfied and

exp


t∫

t0

f̃ (s)ds

 (1 − Φ(t, t0))−
1

k−1 <
r

d[v0, θ0]
, r > 0, t ∈ [t0, a). (7.13)

Then, the family of solutions v(t) is bounded.

Proof. If we suppose that the family of solutions v(t) of (7.1) is unbounded, then, for any r > 0 there
exists a t1 ∈ [t0,∞) such that

d[v(t), θ0] < r for t ∈ [t0, t1) and d[v(t1), θ0] = r.

For the function V(t, v, η) = d[v, θ0], the estimate (7.3) and condition (7.13) imply that d[v(t1), θ0] <
r for all κ ∈ [0, 1]. The obtained contradiction proves the assertion of Theorem 7.3.

Next, we will need the following assumption:

(H∗6). For any δ > 0, k > 1 and d[v0, θ0] < δ, we have

Φ∗(t0, t) = (k − 1)δk−1

t∫
t0

m̃(s) exp

(k − 1)

s∫
t0

f̃ (τ)dτ

 ds < 1, t ∈ [t0, a).

Theorem 7.4. Assume that, for the set of fuzzy equations given by (7.1), the conditions H4–H∗6 hold for
all t ∈ [t0, a), and that, for any δ > 0 and t0 ∈ R+ there exists r = r(t0, δ) > 0 such that

exp


t∫

t0

f̃ (s)ds

 (1 − Φ∗(t0, t))−
1

k−1 <
r(t0, δ)
δ

(7.14)

for all t ∈ [t0, a).
Then, the family of solutions v(t) is equi-bounded.

Proof. Analogously to Lemma 7.1, using conditions H4–H∗6, we obtain

d[v(t), θ0] < δ exp


t∫

t0

f̃ (s)ds

 (1 − Φ∗(t0, t))−
1

k−1 , t ∈ [t0, a). (7.15)

From the estimate (7.15) and condition (7.14), we obtain that d[v(t), θ0] < r(t0, δ) for any t ∈ [t0, a)
and κ ∈ [0, 1] whenever d[v0, θ0] < δ. This proves Theorem 7.4.
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The proofs of the following boundedness results are similar to the proof of Theorem 7.4.

Theorem 7.5. Assume that, for the set of fuzzy equations given by (7.1), the conditions of Theorem 7.4
hold, and that, instead of (7.14), for any δ > 0 there exists r∗ = r∗(δ) > 0 such that

exp


t∫

t0

f̃ (s)ds

 (1 − Φ∗(t0, t))−
1

k−1 <
r∗(δ)
δ

for all t ∈ [t0, a) uniformly on t0 ∈ R+.
Then, the family of solutions v(t) is uniformly bounded.

Theorem 7.6. Assume that, for the set of fuzzy equations given by (7.1), the conditions of Theorem 7.4
hold, and that, instead of (7.14), for given β̄ > 0 and τ = τ(t0, δ) ∈ R+ we have

exp


t∫

t0

f̃ (s)ds

 (1 − Φ∗(t0, t))−
1

k−1 <
β̄

δ
, t ≥ t0 + τ.

Then, the family of solutions v(t) is quasi-equi-ultimately bounded.

Theorem 7.7. Assume that, for the set of fuzzy equations given by (7.1), the conditions of Theorem 7.4
hold, and that, instead of (7.14), for given r̄ > 0 and τ∗ = τ∗(δ) ∈ R+ we have

exp


t∫

t0

f̃ (s)ds

 (1 − Φ∗(t0, t))−
1

k−1 <
r̄
δ

for all t ≥ t0 + τ
∗ uniformly on t0 ∈ R+.

Then, the family of solutions v(t) is quasi-uniformly ultimately bounded with a bound r̄.

The next result follows directly from Theorems 7.4 and 7.6.

Theorem 7.8. Assume that, for the set of fuzzy equations given by (7.1), the conditions of Theorems
7.4 and 7.6 hold simultaneously.

Then, the family of solutions v(t) is equi-ultimately bounded with a bound β̄.

The proof of the next result follows from the proofs of Theorems 7.5 and 7.7.

Theorem 7.9. Assume that, for the set of fuzzy equations given by (7.1), the conditions of Theorems
7.5 and 7.7 hold simultaneously.

Then, the family of solutions v(t) is uniformly ultimately bounded with a bound r̄.

Finally, we will establish Lagrange stability results for the steady state θ0 of (7.1).

Theorem 7.10. Assume that, for the set of fuzzy equations given by (7.1), the conditions of Theorem
7.4 hold, and that, for any t0 ∈ R+ and ξ > 0, there exist δ0(t0, ξ) > 0 and τ = τ(t0, ξ) ∈ R+ such that

exp


t∫

t0

f̃ (s)ds

 (1 − Φ(t0, t))−
1

k−1 <
ξ

δ0(t0, ξ)
, t ≥ t0 + τ(t0, ξ). (7.16)

Then, the family of solutions v(t) is equi-stable in the Lagrange sense.
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Proof. Since all conditions of Theorem 7.4 are satisfied, the family of solutions v(t) is equi-bounded.
In addition, (7.3) and (7.16) imply that d[v(t), θ0] < ξ for any t ≥ t0+τ(t0, ξ) and κ ∈ [0, 1], whenever

d[v0, θ0] < δ0(t0, ξ). This proves that the steady state θ0 of (7.1) is quasi-equi-asymptotically stable,
which proves Theorem 7.10.

The proof of the last result is similar to the proof of Theorem 7.10.

Theorem 7.11. Assume that, for the set of fuzzy equations given by (7.1), the conditions of Theorem
7.5 hold, and that, for any ξ > 0, there exist δ∗(ξ) > 0 and τ∗ = τ∗(ξ) ∈ R+ such that, uniformly on
t0 ∈ R+,

exp


t∫

t0

f̃ (s)ds

 (1 − Φ(t0, t))−
1

k−1 <
ξ

δ∗(ξ)
, t ≥ t0 + τ

∗(ξ).

Then, the family of solutions v(t) is uniformly stable in the Lagrange sense.

Remark 7.12. The proposed boundedness results extend and generalize some existing boundedness
and Lagrange stability results for fuzzy systems [38] to the uncertain case. Also, they complement
some recently published results [39] in the fuzzy case because of the use of the proposed regularization
method.

8. Conclusions

In this paper, two approaches are proposed for the study of the stability and boundedness of solutions
of fuzzy systems of differential equations with uncertain parameters. These approaches are based
on the method of matrix-valued Lyapunov-type functions and an integral method based on nonlinear
integral inequalities. By applying a new scheme of regularization of fuzzy equations with respect to
the inaccuracy parameter [26], numerous new criteria for the stability and boundedness of solutions
for regularized equations have been established via the proposed methods. The results obtained can
be applied to various fuzzy systems and real-world models in which the effects of some uncertain
parameters cannot be neglected. In addition, the proposed methods for the qualitative analysis of
fuzzy equations are of decisive importance for many applications, in particular in the theory of motion
control. The proposed approaches have significant potential for further generalizations and applications
to important classes of fuzzy systems, including systems with delays and impulsive perturbations.
An interesting topic for future research is the application of the proposed methods to fuzzy systems
with fractional-order dynamics and systems whose dynamics are modeled by fuzzy equations with
conformable derivatives of the state vector.
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