Let $ \Delta_1(x; \varphi) $ denote the error term in the classical Rankin-Selberg problem. In this paper, our main results are getting the $ k $-th $ (3\leq k\leq5) $ power moments of $ \Delta_1(x; \varphi) $ in short intervals and its asymptotic formula by using large value arguments.
Citation: Jing Huang, Qian Wang, Rui Zhang. The short interval results for power moments of the Riesz mean error term[J]. Electronic Research Archive, 2023, 31(9): 5917-5927. doi: 10.3934/era.2023300
Let $ \Delta_1(x; \varphi) $ denote the error term in the classical Rankin-Selberg problem. In this paper, our main results are getting the $ k $-th $ (3\leq k\leq5) $ power moments of $ \Delta_1(x; \varphi) $ in short intervals and its asymptotic formula by using large value arguments.
[1] | P. Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. publ. Math., 43 (1974), 273–307. https://doi.org/10.1007/BF02684373 doi: 10.1007/BF02684373 |
[2] | R. A. Rankin, Contributions to the theory of Ramanujans function $\tau(n)$ and similar arithmetical functions Ⅱ. The order of the Fourier coefficients of integral modular forms, Math. Proc. Cambridge Philos. Soc., 35 (1939), 357–372. https://doi.org/10.1017/S0305004100021101 doi: 10.1017/S0305004100021101 |
[3] | A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid., 43 (1940), 47–50. |
[4] | A. Ivić, Large values of certain number-theoretic error terms, Acta Arith., 56 (1990), 135–159. https://doi.org/10.4064/aa-56-2-135-159 doi: 10.4064/aa-56-2-135-159 |
[5] | A. Ivić, K. Matsumoto, Y. Tanigawa, On Riesz means of the coefficients of the Rankin-Selberg series, Math. Proc. Cambridge Philos. Soc., 127 (1999), 117–131. https://doi.org/10.1017/S0305004199003564 doi: 10.1017/S0305004199003564 |
[6] | A. Ivić, On the fourth moment in the Rankin-Selberg problem, Arch. Math., 90 (2008), 412–419. https://doi.org/10.1007/s00013-008-2326-4 doi: 10.1007/s00013-008-2326-4 |
[7] | P. Song, W. G. Zhai, D. Y. Zhang, Power moments of Hecke eigenvalues for congruence group, J. Number Theory, 198 (2019), 139–158. https://doi.org/10.1016/j.jnt.2018.10.006 doi: 10.1016/j.jnt.2018.10.006 |
[8] | K. M. Tsang, Higher-power moments of $\Delta(x), E(t)$ and $P(x)$, Proc. London Math. Soc., S3-65 (1992), 65–84. https://doi.org/10.1112/plms/s3-65.1.65 doi: 10.1112/plms/s3-65.1.65 |
[9] | T. Yoshio, W. G. Zhai, D. Y. Zhang, On the Rankin-Selberg problem: higher power moments of the Riesz mean error term, Sci. China Ser. A-Math., 51 (2008), 148–160. https://doi.org/10.1007/s11425-007-0130-4 doi: 10.1007/s11425-007-0130-4 |
[10] | W. G. Zhai, On higher-power moments of $\Delta(x)$(Ⅱ), Acta Arith., 114 (2008), 35–54. https://doi.org/10.4064/aa114-1-3 doi: 10.4064/aa114-1-3 |
[11] | W. G. Zhai, On higher-power moments of $\Delta(x)$(Ⅲ), Acta Arith., 118 (2005), 263–281. https://doi.org/10.4064/aa118-3-3 doi: 10.4064/aa118-3-3 |
[12] | D. Y. Zhang, Y. N. Wang, Higher-power moments of Fourier coefficients of holomorphic cusp forms for the congruence subgroup $\Gamma_0(N)$, Ramanujan J., 47 (2018), 685–700. https://doi.org/10.1007/s11139-018-0051-6 doi: 10.1007/s11139-018-0051-6 |
[13] | D. Y. Zhang, W. G. Zhai, On the fifth-power moment of $\Delta(x)$, Int. J. Number Theory, 7 (2011), 71–86. https://doi.org/10.1142/S1793042111003922 doi: 10.1142/S1793042111003922 |