Research article

The short interval results for power moments of the Riesz mean error term

  • Received: 01 March 2023 Revised: 26 June 2023 Accepted: 09 August 2023 Published: 31 August 2023
  • Let $ \Delta_1(x; \varphi) $ denote the error term in the classical Rankin-Selberg problem. In this paper, our main results are getting the $ k $-th $ (3\leq k\leq5) $ power moments of $ \Delta_1(x; \varphi) $ in short intervals and its asymptotic formula by using large value arguments.

    Citation: Jing Huang, Qian Wang, Rui Zhang. The short interval results for power moments of the Riesz mean error term[J]. Electronic Research Archive, 2023, 31(9): 5917-5927. doi: 10.3934/era.2023300

    Related Papers:

  • Let $ \Delta_1(x; \varphi) $ denote the error term in the classical Rankin-Selberg problem. In this paper, our main results are getting the $ k $-th $ (3\leq k\leq5) $ power moments of $ \Delta_1(x; \varphi) $ in short intervals and its asymptotic formula by using large value arguments.



    加载中


    [1] P. Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. publ. Math., 43 (1974), 273–307. https://doi.org/10.1007/BF02684373 doi: 10.1007/BF02684373
    [2] R. A. Rankin, Contributions to the theory of Ramanujans function $\tau(n)$ and similar arithmetical functions Ⅱ. The order of the Fourier coefficients of integral modular forms, Math. Proc. Cambridge Philos. Soc., 35 (1939), 357–372. https://doi.org/10.1017/S0305004100021101 doi: 10.1017/S0305004100021101
    [3] A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid., 43 (1940), 47–50.
    [4] A. Ivić, Large values of certain number-theoretic error terms, Acta Arith., 56 (1990), 135–159. https://doi.org/10.4064/aa-56-2-135-159 doi: 10.4064/aa-56-2-135-159
    [5] A. Ivić, K. Matsumoto, Y. Tanigawa, On Riesz means of the coefficients of the Rankin-Selberg series, Math. Proc. Cambridge Philos. Soc., 127 (1999), 117–131. https://doi.org/10.1017/S0305004199003564 doi: 10.1017/S0305004199003564
    [6] A. Ivić, On the fourth moment in the Rankin-Selberg problem, Arch. Math., 90 (2008), 412–419. https://doi.org/10.1007/s00013-008-2326-4 doi: 10.1007/s00013-008-2326-4
    [7] P. Song, W. G. Zhai, D. Y. Zhang, Power moments of Hecke eigenvalues for congruence group, J. Number Theory, 198 (2019), 139–158. https://doi.org/10.1016/j.jnt.2018.10.006 doi: 10.1016/j.jnt.2018.10.006
    [8] K. M. Tsang, Higher-power moments of $\Delta(x), E(t)$ and $P(x)$, Proc. London Math. Soc., S3-65 (1992), 65–84. https://doi.org/10.1112/plms/s3-65.1.65 doi: 10.1112/plms/s3-65.1.65
    [9] T. Yoshio, W. G. Zhai, D. Y. Zhang, On the Rankin-Selberg problem: higher power moments of the Riesz mean error term, Sci. China Ser. A-Math., 51 (2008), 148–160. https://doi.org/10.1007/s11425-007-0130-4 doi: 10.1007/s11425-007-0130-4
    [10] W. G. Zhai, On higher-power moments of $\Delta(x)$(Ⅱ), Acta Arith., 114 (2008), 35–54. https://doi.org/10.4064/aa114-1-3 doi: 10.4064/aa114-1-3
    [11] W. G. Zhai, On higher-power moments of $\Delta(x)$(Ⅲ), Acta Arith., 118 (2005), 263–281. https://doi.org/10.4064/aa118-3-3 doi: 10.4064/aa118-3-3
    [12] D. Y. Zhang, Y. N. Wang, Higher-power moments of Fourier coefficients of holomorphic cusp forms for the congruence subgroup $\Gamma_0(N)$, Ramanujan J., 47 (2018), 685–700. https://doi.org/10.1007/s11139-018-0051-6 doi: 10.1007/s11139-018-0051-6
    [13] D. Y. Zhang, W. G. Zhai, On the fifth-power moment of $\Delta(x)$, Int. J. Number Theory, 7 (2011), 71–86. https://doi.org/10.1142/S1793042111003922 doi: 10.1142/S1793042111003922
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(823) PDF downloads(28) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog