Research article

On regularity criteria for MHD system in anisotropic Lebesgue spaces

  • Received: 29 March 2023 Revised: 14 June 2023 Accepted: 24 June 2023 Published: 30 June 2023
  • This paper concerns the regularity criteria of the three-dimensional magnetohydrodynamic (MHD) system in anisotropic Lebesgue spaces. Two regularity results were proved under additional assumptions on the horizontal components of the velocity field $ {{\bf{u}}} $ and the magnetic field $ {{\bf{B}}} $, or directions of Elsässer's variables $ {{\bf{u}}}\pm{{\bf{B}}} $.

    Citation: Kun Cheng, Yong Zeng. On regularity criteria for MHD system in anisotropic Lebesgue spaces[J]. Electronic Research Archive, 2023, 31(8): 4669-4682. doi: 10.3934/era.2023239

    Related Papers:

  • This paper concerns the regularity criteria of the three-dimensional magnetohydrodynamic (MHD) system in anisotropic Lebesgue spaces. Two regularity results were proved under additional assumptions on the horizontal components of the velocity field $ {{\bf{u}}} $ and the magnetic field $ {{\bf{B}}} $, or directions of Elsässer's variables $ {{\bf{u}}}\pm{{\bf{B}}} $.



    加载中


    [1] G. Duvaut, J. L. Lions, Inéquations en thermoélasticité et magnéto-hydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241–279. https://doi.org/10.1007/BF00250512 doi: 10.1007/BF00250512
    [2] M. Sermange, R. Teman, Some mathematical questions related to the MHD equations, Commun. Pure Appl. Math., 36 (1983), 635–664. https://doi.org/10.1002/cpa.3160360506 doi: 10.1002/cpa.3160360506
    [3] Q. Chen, C. Miao, Z. Zhang, On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations, Commun. Math. Phys., 284 (2008), 919–930. https://doi.org/10.1007/s00220-008-0545-y doi: 10.1007/s00220-008-0545-y
    [4] C. He, Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differ. Equations, 213 (2005), 235–254. https://doi.org/10.3934/dcdsb.2004.4.1065 doi: 10.3934/dcdsb.2004.4.1065
    [5] Y. Wang, BMO and the regularity criterion for weak solutions to the magnetohydynamic equations, J. Math. Anal. Appl., 328 (2007), 1082–1086. https://doi.org/10.1016/j.jmaa.2006.05.054 doi: 10.1016/j.jmaa.2006.05.054
    [6] Y. Zhou, Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881–886. https://doi.org/10.3934/dcds.2005.12.881 doi: 10.3934/dcds.2005.12.881
    [7] R. P. Agarwal, S. Gala, M. A. Ragusa, A regularity criterion of the 3D MHD equations involving one velocity and one current density component in Lorentz space, Z. Angew. Math. Phys., 71 (2020), 95. https://doi.org/10.1007/s00033-020-01318-4 doi: 10.1007/s00033-020-01318-4
    [8] R. Caflisch, I. Klapper, G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD, Commun. Math. Phys., 184 (1997), 443–455. https://doi.org/10.1007/s002200050067 doi: 10.1007/s002200050067
    [9] B. Dong, Z. Chen, Regularity criterion of weak solutions to the 3D Navier-Stokes equations via two velocity components, J. Math. Anal. Appl., 338 (2008), 1–10. https://doi.org/10.1016/j.jmaa.2007.05.003 doi: 10.1016/j.jmaa.2007.05.003
    [10] S. Gala, M. A. Ragusa, Note on the blow-up criterion for generalized MHD equations, in AIP Conference Proceedings, (2017). https://doi.org/10.1063/1.4972650
    [11] S. Gala, M. A. Ragusa, A new regularity criterion for the 3D incompressible MHD equations via partial derivatives, J. Math. Anal. Appl., 481 (2020), 123497. https://doi.org/10.1016/j.jmaa.2019.123497 doi: 10.1016/j.jmaa.2019.123497
    [12] S. Gala, M. A. Ragusa, An improved blow-up criterion for the magnetohydrodynamics with the Hall and ion-slip effects. (Russian) Sovrem. Mat. Fundam. Napravl., 67 (2021), 526–534. https://doi.org/10.22363/2413-3639-2021-67-3-526-534 doi: 10.22363/2413-3639-2021-67-3-526-534
    [13] R. H. Ji, L. Tian, Stability of the 3D incompressible MHD equations with horizontal dissipation in periodic domain, AIMS Math., 6 (2021), 11837–11849. https://doi.org/10.3934/math.2021687 doi: 10.3934/math.2021687
    [14] I. Khan, H. Ullah, H. AlSalman, M. Fiza, S. Islam, M. Shoaib, et al., Fractional analysis of MHD boundary layer flow over a stretching sheet in porous medium: A new stochastic method, J. Funct. Spaces, 2021 (2021), 5844741. https://doi.org/10.1155/2021/5844741 doi: 10.1155/2021/5844741
    [15] Z. Lei, Y. Zhou, BKMs criterion and global weak solutions for magnetohydrodynamics with zero viscosity, Discrete Contin. Dyn. Syst., 25 (2009), 575–583. https://doi.org/10.3934/dcds.2009.25.575 doi: 10.3934/dcds.2009.25.575
    [16] C. Luo, J. Zhang, A regularity result for the incompressible magnetohydrodynamics equations with free surface boundary, Nonlinearity, 33 (2020), 1499. https://doi.org/10.1088/1361-6544/ab60d9 doi: 10.1088/1361-6544/ab60d9
    [17] L. Ni, Z. Guo, Y. Zhou, Some new regularity criteria for the 3D MHD equations, J. Math. Anal. Appl., 396 (2012), 108–118. https://doi.org/10.1016/j.jmaa.2012.05.076 doi: 10.1016/j.jmaa.2012.05.076
    [18] M. E. Schonbek, T. P. Schonbek, E. Süli, Large-time behaviour of solutions to the magnetohydrodynamics equations, Math. Ann., 304 (1996), 717–756. https://doi.org/10.1007/BF01446316 doi: 10.1007/BF01446316
    [19] Y. Zhou, Regularity criteria in terms of pressure for the 3-D Navier–Stokes equations in a generic domain, Math. Ann., 328 (2004), 173–192. https://doi.org/10.1007/s00208-003-0478-x doi: 10.1007/s00208-003-0478-x
    [20] Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 24 (2007), 491–505. https://doi.org/10.1016/J.ANIHPC.2006.03.014 doi: 10.1016/J.ANIHPC.2006.03.014
    [21] X. Zheng, A regularity criterion for the tridimensional Navier-Stokes equations in term of one velocity component, J. Differ. Equations, 256 (2014), 283–309. https://doi.org/10.1016/j.jde.2013.09.002 doi: 10.1016/j.jde.2013.09.002
    [22] C. Qian, A generalized regularity criterion for 3D Navier–Stokes equations in terms of one velocity component, J. Differ. Equations, 260 (2016), 3477–3494. https://doi.org/10.1016/j.jde.2015.10.037 doi: 10.1016/j.jde.2015.10.037
    [23] Z. Guo, M. Caggio, Z. Skalák, Regularity criteria for the Navier–Stokes equations based on one component of velocity, Nonlinear Anal. Real World Appl., 35 (2017), 379–396. https://doi.org/10.1016/j.nonrwa.2016.11.005 doi: 10.1016/j.nonrwa.2016.11.005
    [24] Z. Guo, P. Kuǎera, Z. Skalák, Regularity criterion for solutions to the Navier–Stokes equations in the whole 3D space based on two vorticity components, J. Math. Anal. Appl., 458 (2018), 755–-766. https://doi.org/10.1016/j.jmaa.2017.09.029 doi: 10.1016/j.jmaa.2017.09.029
    [25] Z. Guo, D. Tong, W. Wang, On regularity of the 3D MHD equations based on one velocity component in anisotropic Lebesgue spaces, Appl. Math. Lett., 120 (2021), 107230. https://doi.org/10.1016/j.aml.2021.107230 doi: 10.1016/j.aml.2021.107230
    [26] S. Montgomery-Smith, Conditions implying regularity of the three dimensional Navier-Stokes equation, Appl. Math., 50 (2005), 451–464. https://doi.org/10.1007/s10492-005-0032-0 doi: 10.1007/s10492-005-0032-0
    [27] A. Vasseur, Regularity criterion for 3d Navier-Stokes equations in terms of the direction of the velocity, Appl. Math., 54 (2009), 47–52. https://doi.org/10.1007/s10492-009-0003-y doi: 10.1007/s10492-009-0003-y
    [28] E. Miller, Navier-Stokes regularity criteria in sum spaces, Pure. Appl. Anal., 3 (2021), 527–576. https://doi.org/10.2140/paa.2021.3.527 doi: 10.2140/paa.2021.3.527
    [29] F. Wu, Improvement of several regularity criteria for the Navier-Stokes equations, Nonlinear Anal. Real World Appl., 65 (2022), 103464. https://doi.org/10.1016/j.nonrwa.2021.103464 doi: 10.1016/j.nonrwa.2021.103464
    [30] A. Benedek, R. Panzone, The space $L^p$ with mixed norm, Duke Math. J., 28 (1961), 301–324. https://doi.org/10.1016/0022-247X(65)90110-1 doi: 10.1016/0022-247X(65)90110-1
    [31] O. V. Besov, V. P. Il'In, S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, V.H. Winston & Sons, 1978.
    [32] T. Phan, T. Robertson, On Masuda uniqueness theorem for Leray-Hopf weak solutions in mixed-norm spaces, Eur. J. Mech. B Fluids, 90 (2021), 18–28. https://doi.org/10.1016/j.euromechflu.2021.08.001 doi: 10.1016/j.euromechflu.2021.08.001
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(969) PDF downloads(96) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog