Theory article

Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $

  • Received: 28 February 2023 Revised: 08 May 2023 Accepted: 22 May 2023 Published: 01 June 2023
  • This paper is aimed at determining the derivation superalgebra of modular Lie superalgebra $ \overline{K}(n, m) $. To that end, we first describe the $ \mathbb{Z} $-homogeneous derivations of $ \overline{K}(n, m) $. Then we obtain the derivation superalgebra $ Der(\overline{K}) $. Finally, we partly determine the derivation superalgebra $ Der(K) $ by virtue of the invariance of $ K(n, m) $ under $ Der(\overline{K}) $.

    Citation: Dan Mao, Keli Zheng. Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $[J]. Electronic Research Archive, 2023, 31(7): 4266-4277. doi: 10.3934/era.2023217

    Related Papers:

  • This paper is aimed at determining the derivation superalgebra of modular Lie superalgebra $ \overline{K}(n, m) $. To that end, we first describe the $ \mathbb{Z} $-homogeneous derivations of $ \overline{K}(n, m) $. Then we obtain the derivation superalgebra $ Der(\overline{K}) $. Finally, we partly determine the derivation superalgebra $ Der(K) $ by virtue of the invariance of $ K(n, m) $ under $ Der(\overline{K}) $.



    加载中


    [1] B. DeWitt, Supermanifolds, 2$^{nd}$ edition, Cambridge University Press, Cambridge, 1992.
    [2] P. Fayet, S. Ferrara, Supersymmetry, Phys. Rep., 32 (1977), 249–334. https://doi.org/10.1016/0370-1573(77)90066-7 doi: 10.1016/0370-1573(77)90066-7
    [3] V. S. Varadarajan, Supersymmetry for Mathematicians: An Introduction, American Mathematical Society, Rhode Island, 2004
    [4] V. G. Kac, Lie Superalgebras, Adv. Math., 26 (1977), 8–96. https://doi.org/10.1016/0001-8708(77)90017-2 doi: 10.1016/0001-8708(77)90017-2
    [5] Y. Wang, Y. Zhang, The associative forms of the graded Lie superalgebras, Adv. Math., 29 (2000), 65–70.
    [6] J. Yuan, W. Liu, W. Bai, Associative forms and second cohomologies of Lie superalgebras HO and KO, J. Lie Theory, 23 (2009), 203–215.
    [7] Q. Mu, Y. Zhang, Infinite-dimensional Hamiltonian Lie superalgebras, Sci. China Math., 53 (2010), 1625–1634. https://doi.org/10.1007/s11425-010-3142-4 doi: 10.1007/s11425-010-3142-4
    [8] K. Zheng, Y. Zhang, The natural filtration of finite dimensional modular Lie superalgebras of special type, Abstr. Appl. Anal., 2013 (2013), 891241. https://doi.org/10.1155/2013/891241 doi: 10.1155/2013/891241
    [9] K. Zheng, Y. Zhang, W. Song, The natural filtrations of finite-dimensional modular Lie superalgebras of Witt and Hamiltonian type, Pac. J. Math., 269 (2014), 199–218. https://doi.org/10.2140/pjm.2014.269.199 doi: 10.2140/pjm.2014.269.199
    [10] J. Yuan, W. Liu, Filtration, automorphisms, and classification of infinite-dimensional odd contact superalgebras, Front. Math. China, 8 (2013), 203–216. https://doi.org/10.1007/s11464-012-0185-6 doi: 10.1007/s11464-012-0185-6
    [11] W. Liu, Y. Zhang, Automorphism groups of restricted cartan-type Lie superalgebras, Commun. Algebr., 34 (2006), 3767–37842. https://doi.org/10.1080/00927870600862615 doi: 10.1080/00927870600862615
    [12] W. Xie, Y. Zhang, Second cohomology of the modular Lie superalgebra of cartan type k, Algebr. Colloq., 16 (2009), 309–324. https://doi.org/10.1142/S1005386709000303 doi: 10.1142/S1005386709000303
    [13] S. Bouarroudj, P. Grozman, A. Lebedev, D. Leites, Divided power (co)homology. Presentations of simple finite dimensional modular Lie superalgebras with Cartan matrix, Homol. Homotopy Appl., 12 (2010), 237–278. https://doi.org/10.4310/HHA.2010.v12.n1.a13 doi: 10.4310/HHA.2010.v12.n1.a13
    [14] F. Ma, Q. Zhang, The derivation algebra of modular Lie superalgebra k-type, J. Math., 20 (2000), 431–435. https://doi.org/10.13548/j.sxzz.2000.04.015 doi: 10.13548/j.sxzz.2000.04.015
    [15] Q. Zhang, Y. Zhang, Derivation algebras of modular Lie superalgebras W and S of Cartan type, Acta Math. Sci., 20 (2000), 137–144. https://doi.org/10.1016/s0252-9602(17)30743-9 doi: 10.1016/s0252-9602(17)30743-9
    [16] W. Liu, Y. Zhang, X. Wang, The derivation algebra of the Cartan-type Lie superalgebra HO, J. Algebr., 273 (2004), 176–205. https://doi.org/10.1016/j.jalgebra.2003.10.019 doi: 10.1016/j.jalgebra.2003.10.019
    [17] J. Fu, Q. Zhang, C. Jiang, The Cartan-type modular Lie superalgebra KO, Commun. Algebr., 34 (2006), 107–128. https://doi.org/10.1080/00927870500346065 doi: 10.1080/00927870500346065
    [18] W. Bai, W. Liu, Superderivations for modular graded lie superalgebras of cartan-type, Algebr. Represent. Theor., 17 (2014), 69–86. https://doi.org/10.1007/s10468-012-9387-6 doi: 10.1007/s10468-012-9387-6
    [19] S. Awuti, Y. Zhang, Modular Lie superalgebra $\overline{W}(n, m)$, Northeast Norm. Univ. (Nat. Sci. Ed.), 40 (2008), 7–11.
    [20] L. Ren, Q. Mu, Y. Zhang, A class of finite-dimensional Lie superalgebras of hamiltonian type, Algebr. Colloq., 18 (2011), 347–360. https://doi.org/10.1142/S1005386711000241 doi: 10.1142/S1005386711000241
    [21] K. Zheng, Y. Zhang, J. Zhang, A class of finite dimensional modular Lie superalgebras of special type, Bull. Malays. Math. Sci. Soc., 39 (2016), 381–390. https://doi.org/10.1007/s40840-015-0177-2 doi: 10.1007/s40840-015-0177-2
    [22] D. Mao, K. Zheng, Constructions and properties for a finite-dimensional modular Lie superalgebra $K(n, m)$, J. Math., 2021 (2021), 7069556. https://doi.org/10.1155/2021/7069556 doi: 10.1155/2021/7069556
    [23] Y. Zhang, Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic, Chin. Sci. Bull., 42 (1997), 720–724. https://doi.org/10.1007/BF03186962 doi: 10.1007/BF03186962
    [24] Y. Zhang, W. Liu, Modular Lie Superalgebras, Science Press, Beijing, 2004.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(970) PDF downloads(38) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog