In this paper, the interior inverse scattering problem of a cavity is considered. By use of a general boundary condition, we can reconstruct the shape of the cavity without a priori information of the boundary condition type. The method of fundamental solutions (MFS) with regularization is formulated for solving the scattered field and its normal derivative on the cavity boundary. Newton's method is employed to reconstruct the cavity boundary by satisfying the general boundary condition. This hybrid method copes with the ill-posedness of the inverse problem in the MFS step and deals with the nonlinearity in the Newton's step. Some computational examples are presented to demonstrate the effectiveness of our method.
Citation: Yujie Wang, Enxi Zheng, Wenyan Wang. A hybrid method for the interior inverse scattering problem[J]. Electronic Research Archive, 2023, 31(6): 3322-3342. doi: 10.3934/era.2023168
In this paper, the interior inverse scattering problem of a cavity is considered. By use of a general boundary condition, we can reconstruct the shape of the cavity without a priori information of the boundary condition type. The method of fundamental solutions (MFS) with regularization is formulated for solving the scattered field and its normal derivative on the cavity boundary. Newton's method is employed to reconstruct the cavity boundary by satisfying the general boundary condition. This hybrid method copes with the ill-posedness of the inverse problem in the MFS step and deals with the nonlinearity in the Newton's step. Some computational examples are presented to demonstrate the effectiveness of our method.
[1] | D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4th edition, Springer, Berlin, 2019. https://doi.org/10.1007/978-3-030-30351-8 |
[2] | F. Cakoni, D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer, Berlin, 2006. https://doi.org/10.1007/3-540-31230-7 |
[3] | D. Colton, R. Kress, Integral Equation Methods in Scattering Theory, Wiley, Chichester, 1983. https://doi.org/10.1137/1.9781611973167 |
[4] | P. Jakubik, R. Potthast, Testing the integrity of some cavity—the Cauchy problem and the range test, Appl. Numer. Math., 58 (2008), 899–914. https://doi.org/10.1016/j.apnum.2007.04.007 doi: 10.1016/j.apnum.2007.04.007 |
[5] | H. Qin, D. Colton, The inverse scattering problem for cavities, Appl. Numer. Math., 62 (2012), 699–708. https://doi.org/10.1016/j.apnum.2010.10.011 doi: 10.1016/j.apnum.2010.10.011 |
[6] | H. Qin, D. Colton, The inverse scattering problem for cavities with impedance boundary condition, Adv. Comput. Math., 36 (2012), 157–174. https://doi.org/10.1007/s10444-011-9179-2 doi: 10.1007/s10444-011-9179-2 |
[7] | F. Zeng, F. Cakoni, J. Sun, An inverse electromagnetic scattering problem for a cavity, Inverse Probl., 27 (2011), 125002. https://doi.org/10.1088/0266-5611/27/12/125002 doi: 10.1088/0266-5611/27/12/125002 |
[8] | F. Zeng, S. Meng, The interior inverse electromagnetic scattering for an inhomogeneous cavity, Inverse Probl., 37 (2021), 025007. https://doi.org/10.1088/1361-6420/abd7cc doi: 10.1088/1361-6420/abd7cc |
[9] | H. Qin, F. Cakoni, Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem, Inverse Probl., 27 (2011), 035005. https://doi.org/10.1088/0266-5611/27/3/035005 doi: 10.1088/0266-5611/27/3/035005 |
[10] | F. Zeng, P. Suarez, J. Sun, A decomposition method for an interior inverse scattering problem, Inverse Probl. Imaging, 7 (2013), 291–303. https://doi.org/10.3934/ipi.2013.7.291 doi: 10.3934/ipi.2013.7.291 |
[11] | L. Liu, J. Cai, Y. Xu, Regularized Newton iteration method for a penetrable cavity with internal measurements in inverse scattering problem, Math. Methods Appl. Sci., 43 (2019), 2665–2678. https://doi.org/10.1002/mma.6074 doi: 10.1002/mma.6074 |
[12] | X. Liu, The factorization method for cavities, Inverse Probl., 30 (2014), 015006. https://doi.org/10.1088/0266-5611/30/1/015006 doi: 10.1088/0266-5611/30/1/015006 |
[13] | F. Qu, J. Yang, H. Zhang, Shape reconstruction in inverse scattering by an inhomogeneous cavity with internal measurements, SIAM J. Imag. Sci., 12 (2019), 788–808. https://doi.org/10.1137/18M1232401 doi: 10.1137/18M1232401 |
[14] | Y. Wang, F. Ma, E. Zheng, Bayesian method for shape reconstruction in the inverse interior scattering problem, Math. Probl. Eng., 2015 (2015), 1–12. https://doi.org/10.1155/2015/935294 doi: 10.1155/2015/935294 |
[15] | Y. Sun, Y. Guo, F. Ma, The reciprocity gap functional method for the inverse scattering problem for cavities, Appl. Anal., 95 (2016), 1327–1346. https://doi.org/10.1080/00036811.2015.1064519 doi: 10.1080/00036811.2015.1064519 |
[16] | D. Zhang, Y. Wu, Y. Wang, Y. Guo, A direct imaging method for the exterior and interior inverse scattering problems, Inverse Probl. Imaging, 16 (2022), 1299–1323. https://doi.org/10.3934/ipi.2022025 doi: 10.3934/ipi.2022025 |
[17] | Y. Yin, W. Yin, P. Meng, H. Liu, The interior inverse scattering problem for a two-layered cavity using the Bayesian method, Inverse Probl. Imaging, 16 (2022), 673–690. https://doi.org/10.3934/ipi.2021069 doi: 10.3934/ipi.2021069 |
[18] | Y. Ou, F. Zeng, An interior inverse scattering problem in elasticity, Appl. Anal., 101 (2022), 796–809. https://doi.org/10.1080/00036811.2020.1758312 doi: 10.1080/00036811.2020.1758312 |
[19] | Y. Hu, F. Cakoni, J. Liu, The inverse scattering problem for a partially coated cavity with interior measurements, Appli. Anal., 93 (2014), 936–956. https://doi.org/10.1080/00036811.2013.801458 doi: 10.1080/00036811.2013.801458 |
[20] | L. Liu, The inverse scattering problem for a partially coated penetrable cavity with interior measurements, Appl. Anal., 96 (2017), 844–868. https://doi.org/10.1080/00036811.2016.1160073 doi: 10.1080/00036811.2016.1160073 |
[21] | Y. Gao, H. Liu, X. Wang, K. Zhang, On an artificial neural network for inverse scattering problems, J. Comput. Phys., 448 (2022), 110771. https://doi.org/10.1016/j.jcp.2021.110771 doi: 10.1016/j.jcp.2021.110771 |
[22] | W. Yin, W. Yang, H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data, J. Comput. Phys., 417 (2020), 109594. https://doi.org/10.1016/j.jcp.2020.109594 doi: 10.1016/j.jcp.2020.109594 |
[23] | W. Yin, J. Ge, P. Meng, F. Qu, A neural network method for the inverse scattering problem of impenetrable cavities, Electron. Res. Arch., 28 (2020), 1123–1142. https://doi.org/10.3934/era.2020062 doi: 10.3934/era.2020062 |
[24] | J. Liu, F. Ma, An improved hybrid method for inverse obstacle scattering problems, Commun. Math. Res., 27 (2011), 215–226. https://doi.org/10.13447/j.1674-5647.2011.03.010 doi: 10.13447/j.1674-5647.2011.03.010 |
[25] | R. Kress, P. Serranho, A hybrid method for sound-hard obstacle reconstruction, J. Comput. Appl. Math., 204 (2007), 418–427. https://doi.org/10.1016/j.cam.2006.02.047 doi: 10.1016/j.cam.2006.02.047 |
[26] | P. Serranho, A hybrid method for inverse scattering for shape and impedance, Inverse Probl., 22 (2006), 663–680. https://doi.org/10.1088/0266-5611/22/2/017 doi: 10.1088/0266-5611/22/2/017 |
[27] | P. Serranho, A hybrid method for inverse obstacle scattering problems, Ph.D thesis, Georg-August-Universität, Germany, Göttingen, 2007. https://doi.org/11858/00-1735-0000-0006-B38F-0 |
[28] | R. Kress, Uniqueness and numerical methods in inverse obstacle scattering, J. Phys. Conf. Ser., 73 (2007), 012003. https://doi.org/10.1088/1742-6596/73/1/012003 doi: 10.1088/1742-6596/73/1/012003 |