We investigate the following nonlinear system
$ \begin{cases} -(a+ b\int _{\Omega}|\nabla u|^{2}dx)\Delta u+\phi u = \lambda u+\mu|u|^{2}u, \; \ x\in\Omega, \\ -\Delta\phi = u^{2}, \; \ x\in\Omega, \\ u = \phi = 0, \; \ x\in \partial\Omega, \end{cases} $
with $ a, b > 0 $, $ \lambda, \mu\in\mathbb{R} $, and $ \Omega\subset \mathbb{R}^{3} $ is bounded with smooth boundary. Let $ \lambda_{1} > 0 $ be the first eigenvalue of $ (-\Delta u, H^{1}_{0}(\Omega)) $. We get that for certain $ \widetilde{\mu} > 0 $ there exists at least one least energy sign-changing solution for the above system if $ \lambda < a\lambda_{1} $ and $ \mu > \widetilde{\mu} $. In addition, we remark that the nonlinearity $ \lambda u+\mu|u|^{2}u $ does not satisfy the growth conditions.
Citation: Xia Su, Wen Guan, Xia Li. Least energy sign-changing solutions for Kirchhoff-Schrödinger-Poisson system on bounded domains[J]. Electronic Research Archive, 2023, 31(5): 2959-2973. doi: 10.3934/era.2023149
We investigate the following nonlinear system
$ \begin{cases} -(a+ b\int _{\Omega}|\nabla u|^{2}dx)\Delta u+\phi u = \lambda u+\mu|u|^{2}u, \; \ x\in\Omega, \\ -\Delta\phi = u^{2}, \; \ x\in\Omega, \\ u = \phi = 0, \; \ x\in \partial\Omega, \end{cases} $
with $ a, b > 0 $, $ \lambda, \mu\in\mathbb{R} $, and $ \Omega\subset \mathbb{R}^{3} $ is bounded with smooth boundary. Let $ \lambda_{1} > 0 $ be the first eigenvalue of $ (-\Delta u, H^{1}_{0}(\Omega)) $. We get that for certain $ \widetilde{\mu} > 0 $ there exists at least one least energy sign-changing solution for the above system if $ \lambda < a\lambda_{1} $ and $ \mu > \widetilde{\mu} $. In addition, we remark that the nonlinearity $ \lambda u+\mu|u|^{2}u $ does not satisfy the growth conditions.
[1] | G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. |
[2] | D. Cassani, Z. Liu, C. Tarsi, J. Zhang, Multiplicity of sign-changing solutions for Kirchhoff-type equations, Nonlinear Anal., 186 (2019), 145–161. https://doi.org/10.1016/j.na.2019.01.025 doi: 10.1016/j.na.2019.01.025 |
[3] | B. Cheng, X. H. Tang, Ground state sign-changing solutions for asymptotically 3-linear Kirchhoff-type problems, Complex Var. Elliptic Equations, 62 (2017), 1093–1116. https://doi.org/10.1080/17476933.2016.1270272 doi: 10.1080/17476933.2016.1270272 |
[4] | Y. B. Deng, S. J. Peng, W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^{3}$, J. Funct. Anal., 269 (2015), 3500–3527. https://doi.org/10.1016/j.jfa.2015.09.012 doi: 10.1016/j.jfa.2015.09.012 |
[5] | G. M. Figueiredo, J. R. Santos Júnior, Existence of a least energy nodal solution for a Schrödinger-Kirchhoff equation with potential vanishing at infinity, J. Math. Phys., 56 (2015), 051506. https://doi.org/10.1063/1.4921639 doi: 10.1063/1.4921639 |
[6] | F. Y. Li, C. Gao, X. Zhu, Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type nonlinearity, J. Math. Anal. Appl., 448 (2017), 60–80. https://doi.org/10.1016/j.jmaa.2016.10.069 doi: 10.1016/j.jmaa.2016.10.069 |
[7] | Q. Li, X. Du, Z. Zhao, Existence of sign-changing solutions for nonlocal Kirchhoff-Schrödinger-type equations in $\mathbb{R}^{3}$, J. Math. Anal. Appl., 477 (2019), 174–186. https://doi.org/10.1016/j.jmaa.2019.04.025 doi: 10.1016/j.jmaa.2019.04.025 |
[8] | S. Lu, Signed and sign-changing solutions for a Kirchhoff-type equation in bounded domains, J. Math. Anal. Appl., 432 (2015), 965–982. https://doi.org/10.1016/j.jmaa.2015.07.033 doi: 10.1016/j.jmaa.2015.07.033 |
[9] | A. M. Mao, S. X. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, J. Math. Anal. Appl., 383 (2011), 239–243. https://doi.org/10.1016/j.jmaa.2011.05.021 doi: 10.1016/j.jmaa.2011.05.021 |
[10] | A. M. Mao, Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the $P.S.$ condition, Nonlinear Anal., 70 (2009), 1275–1287. https://doi.org/10.1016/j.na.2008.02.011 doi: 10.1016/j.na.2008.02.011 |
[11] | M. Shao, A. Mao, Signed and sign-changing solutions of Kirchhoff type problems, J. Fixed. Point Theory Appl., 20 (2018), 1–20. https://doi.org/10.1007/s11784-018-0486-9 doi: 10.1007/s11784-018-0486-9 |
[12] | W. Shuai, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differ. Equations, 259 (2015), 1256–1274. https://doi.org/10.1016/j.jde.2015.02.040 doi: 10.1016/j.jde.2015.02.040 |
[13] | J. Sun, L. Li, M. Cencelj, B. Gabrovšek, Infinitely many sign-changing solutions for Kirchhoff type problems in $\mathbb{R}^{3}$, Nonlinear Anal., 186 (2019), 33–54. https://doi.org/10.1016/j.na.2018.10.007 doi: 10.1016/j.na.2018.10.007 |
[14] | X. H. Tang, B. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differ. Equations, 261 (2016), 2384–2402. https://doi.org/10.1016/j.jde.2016.04.032 doi: 10.1016/j.jde.2016.04.032 |
[15] | D. B. Wang, Least energy sign-changing solutions of Kirchhoff-type equation with critical growth, J. Math. Phys., 61 (2020), 011501. https://doi.org/10.1063/1.5074163 doi: 10.1063/1.5074163 |
[16] | L. Wang, B. L. Zhang, K. Cheng, Ground state sign-changing solutions for the Schrödinger-Kirchhoff equation in $\mathbb{R}^{3}$, J. Math. Anal. Appl., 466 (2018), 1545–1569. https://doi.org/10.1016/j.jmaa.2018.06.071 doi: 10.1016/j.jmaa.2018.06.071 |
[17] | H. Ye, The existence of least energy nodal solutions for some class of Kirchhoff equations and Choquard equations in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 431 (2015), 935–954. https://doi.org/10.1016/j.jmaa.2015.06.012 doi: 10.1016/j.jmaa.2015.06.012 |
[18] | Z. T. Zhang, K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descentow, J. Math. Anal. Appl., 317 (2006), 456–463. https://doi.org/10.1016/j.jmaa.2005.06.102 doi: 10.1016/j.jmaa.2005.06.102 |
[19] | X. Zhong, C. L. Tang, The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem, Commun. Pure Appl. Anal., 16 (2017), 611–628. https://doi.org/10.3934/cpaa.2017030 doi: 10.3934/cpaa.2017030 |
[20] | C. O. Alves, M. A. S. Souto, Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains, Z. Angew. Math. Phys., 65 (2014), 1153–1166. https://doi.org/10.1007/s00033-013-0376-3 doi: 10.1007/s00033-013-0376-3 |
[21] | S. Chen, X. Tang, Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in $\mathbb{R}^{3}$, Z. Angew. Math. Phys., 67 (2016). https://doi.org/10.1007/s00033-016-0695-2 doi: 10.1007/s00033-016-0695-2 |
[22] | S. Khoutir, Least energy sign-changing solutions for a class of Schrödinger-Poisson system on bounded domains, J. Math. Phys., 62 (2021), 031509. https://doi.org/10.1063/5.0040741 doi: 10.1063/5.0040741 |
[23] | S. Kim, J. Seok, On nodal solutions of the nonlinear Schrödinger-Poisson equations, Commun. Contemp. Math., 14 (2012), 1250041. https://doi.org/10.1142/S0219199712500411 doi: 10.1142/S0219199712500411 |
[24] | Z. Liang, J. Xu, X. Zhu, Revisit to sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb{R}^{3}$, J. Math. Anal. Appl., 435 (2016), 783–799. https://doi.org/10.1016/j.jmaa.2015.10.076 doi: 10.1016/j.jmaa.2015.10.076 |
[25] | Z. Liu, Z. Wang, J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system, Ann. Mat. Pura Appl., 4 (2016), 775–794. https://doi.org/10.1007/s10231-015-0489-8 doi: 10.1007/s10231-015-0489-8 |
[26] | W. Shuai, Q. Wang, Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb{R}^{3}$, Z. Angew. Math. Phys., 66 (2015), 3267–3282. https://doi.org/10.1007/s00033-015-0571-5 doi: 10.1007/s00033-015-0571-5 |
[27] | D. B. Wang, H. Zhang, W. Guan, Existence of least-energy sign-changing solutions for Schrödinger-Poisson system with critical growth, J. Math. Anal. Appl., 479 (2019), 2284–2301. https://doi.org/10.1016/j.jmaa.2019.07.052 doi: 10.1016/j.jmaa.2019.07.052 |
[28] | Z. Wang, H. Zhou, Sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb{R}^{3}$, Calc. Var. Partial Differ. Equations, 52 (2015), 927–943. https://doi.org/10.1007/s00526-014-0738-5 doi: 10.1007/s00526-014-0738-5 |
[29] | X. Zhong, C. L. Tang, Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in $\mathbb{R}^{3}$, Nonlinear Anal. Real World Appl., 39 (2018), 166–184. https://doi.org/10.1016/j.nonrwa.2017.06.014 doi: 10.1016/j.nonrwa.2017.06.014 |
[30] | V. Bobkov, Least energy nodal solutions for elliptic equations with indefinite nonlinearity, Electron. J. Qual. Theory Differ. Equations, 2014 (2014), 1–15. https://doi.org/10.14232/ejqtde.2014.1.56 doi: 10.14232/ejqtde.2014.1.56 |
[31] | D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655–674. https://doi.org/10.1016/j.jfa.2006.04.005 doi: 10.1016/j.jfa.2006.04.005 |
[32] | M. Willem, Minimax Theorems, Birkhäuser, Bosten, 1996. |