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Abstract: We investigate the following nonlinear system

—(a+b [ VuPdx)Au+ ¢pu = du+ plulu, x€Q,
-A¢p =u?, x€Q,
u=¢=0, xeoQ,

witha,b > 0,4, u € R,and Q C R3 is bounded with smooth boundary. Let 4; > 0 be the first eigenvalue
of (—Au, Hé(Q)). We get that for certain ¢ > 0 there exists at least one least energy sign-changing
solution for the above system if 4 < ad; and u > pu. In addition, we remark that the nonlinearity
Au + p|ul*u does not satisfy the growth conditions.

Keywords: Kirchhoff type equation; Schrodinger-Poisson problem; sign-changing solutions; Nehari
manifold; the growth conditions

1. Introduction and main results

We consider the following nonlinear problem in R

—(a+b fg \Vul?dx)Au + ¢u = Au + ulul*u, x € Q,
-A¢p =u?, x€Q, (1.1)
u=¢=0, xeoQ,

witha,b > 0, 4, u € R, Q C R? is a bounded and 0L is the smooth boundary of Q.
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In paper [1] Kirchhoff firstly introduced two Kirchhoff type equations with onnlocal term. There
is an extensive literature concerning the sign-changing solutions for the Kirchhoff type equations, see
e.g., [2-19]. System (1.1) is in connection with these equations.

System (1.1) also stems from the Schrodinger-Poisson problem

{ —Au+ V() + Ap(x)u = Fu),

1.2
AR (1.2)

where x € R®. For physical reason the appearance of nonlocal term in these equations makes them
important and interesting. In the past several decades, the above problems or similar problems have
captured the attention of many mathematicians. Especially, many authors (for example, [20-29]) used
variational methods to prove the existence of sign-changing solutions for these problems. However,
as far as we know, the nonlinearity always satisfies the growth conditions of super-linear near zero
or super-three-linear near infinity except [3, 19,22]. We remark that, although Cheng and Tang [3]
obtained such solution when the nonlinearity satisfies asymptotically linear growth at infinity about ,
their results still depend on the fact that nonlinearity is super-linear near zero about . In [19], Zhong
and Tang investigated the similar system

(1.3)

—(a+Db [ [VuPdx)Au = du+ |ufu, x€Q,
u=0, xeoQ,

with a,b > 0 and Q be smooth bounded in RY,N = 1,2,3. By Nehari manifold argument, they
obtained that there exists A > 0 such that the above Kirchhoff-type system has at least one such solution
forall 0 < b < A and A < ad,, where A, is the principal eigenvalue of (—A, H(l)(Q)). Obviously, the
nonlinearity Au+|u>u does not satisfy such super-linear growth conditions. However, since their results
strongly depend on the condition 0 < b < A, the methods used in [19] seem not valid for all b > 0.
Recently, Khoutir studied the Schrédinger-Poisson type system in R* where the nonlinear term is a
combination of linear terms and cubic terms. He also established the existence of such solutions.

Motivated by these works, we study the least energy sign-changing solution for (1.1). Our method
is in collection with the works in [30], where authors dealt with p-Laplacian equation.

Let LP(Q) with 1 < p < oo be the Lebesgue space equipped with p-norm, and H;(€2) be the usual
Sobolev space equipped with the inner product and the norm

(u,v):fVu-Vvdx, lull = (u, ).
Q

Since Q is bounded, the embedding from H(l) (Q) to LP(Q) is continuous and compact for p € [1,6), and
the embedding is not compact but continuous for p = 6.
The Lax-Milgram theorem shows that, given u € H(Q), there exists a unique ¢,, € H,(€) satisfying

_A¢u = ”2’

1 2
mm:—f”@w
ar Jo ix -yl

It is easy to get that ¢, > 0 and ¢,, = *¢,, forany t > 0 and u € Hé(Q). Moreover ¢, has some
properties.

where
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Lemma 1.1.72%3 For every u € Hé(Q):
(i) there exists C > 0 such that ||¢,|| < C|lull* and

f IV *dx = f purdx < Cllull*;
Q Q

(ii) ¢, = ¢y in H(I)(Q) when u, — uin Hé(Q), and

lim f G, udx = f ¢ utdx.
n—=te Jo Q
b 1 pl
J(u):g fQ Vuldx+ fg Vuldx)’ + fg puldx -3 fg |u2|dx—'% fg luf*dx

1 1
= EAA(M) + ZB,u(u)a

Let

where

Ar(u) = allull* - ﬁf u*dx,
Q

B, (1) = bllul|* + f puuldx — f |ul*dx.
Q Q
Obviously J(u) € C'(H}(Q),R) and

J'(u),v) = af Vu - Vvdx + b||ul|? f Vu - Vvdx + f(ﬁuuvdx - /lfuvdx —,uf lul*uvdx,
Q Q Q Q Q

with u,v € Hé(Q).
In this article, we write
u" = max{u(x),0}, v~ = min{u(x), 0},
so,u=u""+u and |u| = ut —u".
u is called a least energy sign-changing solution of system (1.1) if u € Hy(Q) with u* # 0 is a
solution of system (1.1) and satisfies

J(u) = inf(J(v) : v € HY(Q),v* #0,J (v) = 0}.

Let
M= {ue Hy(Q) : u* #0,(J (w),u*) = 0},
and set

= inf .
i ff S

In order to get that u is a least energy sign-changing solution of the system (1.1), we will show that
m is achieved at the critical point of J(u) with u € M.
Let A; be the first eigenvalue of the equation:

—Au = Adu, in Q,
u=20, on 0Q,
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and the following characterization holds

2

. u
Ay = inf %
ueHy@\0) |ul5

If u € H)(Q) is a sign-changing solution of (1.1), then
(J'(u),u*) = 0.
Consequently, for any A < ad;, we obtain that

bllulPllee||* + f¢u(u+)2dx —,uf u*fdx = —A(u*) <0,
Q Q

and

bllulPllut 11> + [, ¢u(u)?dx bllulPllu|? + |, ¢u(u”)*dx
fQ fQ ,Yue M.

M > max s
{ I, lut*dx I, lu*dx

On the contrary, if

. bllulPllut? + [, ¢u(uYdx bllulPllu|? + [ du(u)?dx
u < inf max , ,
ueHL(@\(0} I, lut*dx I lu*dx

then for any u € Hy(Q) with u* # 0, we obtain

Bllulll | + f b Vodx — f x> 0
Q Q

or

Dl + f (™) dx — g f x> 0.
Q Q

Due to A (u*) > 0, we get
(J' (), u”y #0 or (J'(u),u") #0.

Hence M = () and the sign-changing solution for (1.1) does not exist.
Therefore, we denote

_ - { {b||u||2||u+||2+ o, $uu)dx bllulPllu|* + Lm(w)zdx}}
u:= inf max .
{0}

ueH) @)\ |t [} ’ [}

We have the main theorem.

Theorem 1.1. If A < ad, and u > @, there is at least one nontrivial least energy sign-changing solution
for system (1.1).
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2. Technical lemmas

When u € Hj(Q) with u* # 0, we have

¢u(x) = ¢u’ (X) + ¢u* (x)’
Ay(u) = Ay(u”) + A(u'),

By(u) = By(u*) + B,(u") + 2bllu”||lu*|* + fﬁbm(u_)zdx + f¢u—(u+)2dx,
Q Q
Jw) =Jw)+JW") + [3||u—||2||u+||2 ‘1 f b (u™) dx + L f - (u*)*dx,
2 4 Jo 4 Jo
(T (), u*y = (J' (@), u*) + bllu” Pl P + f(/hﬁ(ui)zd%
Q
Defining

H, = {u € Hy(Q),u* # 0 : B,(u*) + bllu™|P|lu*|* + f(/)u:(ui)zdx < 0}
Q

= {u € Hy(Q),u* # 0 : bljulllu*|* + quu(ui)zdx —u f lut|*dx < 0}.
Q Q

Lemma 2.1. If A < ad, and u > p, then H, # 0 and M C H,,.

Proof. Assume that u > 71, then there exists v € H)(Q) with v* # 0 satisfying

BIMIPIVIP + [, 6.(v)?dx bIVIPIV P + fg¢v<v->2dx} .
= M.

L > max ) )
{ v ld

VI3
So,
BIVIPIVII> + f¢v(v+)2dx — vty < 0.
Q

This means that v € H,,. Thus H, # 0.
For any u € M, we have

bl + f%(ui)zdx —H f |t dx = —A(u*).

Q Q

If0 < A< ad,, we get

Au*) = allu|? ~ ﬂf

1
lutPdx > (a — =)|lu*|]* > 0.
Q /ll

If A <0, it is obviously that A,(#*) > 0. Then (2.7) and (2.8) implies that

bllul Pllu*|I* + ffﬁu(ui)zdx —,uf lu*|*dx < 0.
Q Q

This means u € H,. So we get that M C H,,.

2.1
(2.2)

(2.3)
(2.4)

(2.5)

(2.6)

2.7)

(2.8)
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Lemma 2.2. Suppose that A < ad, and u > p hold, then for every u € H,, there exists exactly one pair
of positive numbers (l,,n,) such that Lu* + n,u~ € Mand J(l,u* + n,u”) = max;,~o J(lu™ + nu~). And
if (J (w),u*) <0, we have 0 < I,,n, < 1.

Proof. By the definition of M and (2.5), lu™ + nu~ € M with u € H,, if and only if (/,n) with [,n > 0
satisfies

(J'(Iu* + nu), luty = PA(ub) + PB,(ub) + bPr?|\ut|P|lu”|* + Pn? fg ¢u-(uh)dx = 0,
J'(lut + nu),nu”y = n?A(u) + n4Bl,(u_) + PRt + Pn? fg ¢ur(u)?dx = 0.

Thus

{ B, () + 2 [blu [Pl 2 + [ b (2] = —A(uc”), 09

n?B,(u”) + Pbllut IPllu|P + [ ¢ur (u)2dx] = A (u),
which can be rewritten as

[ B, (u”) bl 1Pl 1P + [ ¢ (u*)*dx H P ] _ [ —A(u”) ]

bllut 1Pl + [, du () *dx B,(u”) n’ —A(u”)

Then u € H,, implies

‘ B, (u?) bllut IPllu|P + [ ¢ (u*)dx
bl 1Pl 1P + [, dus () *dx B,(u")

= B, (u")By(u”) = [bllu*|Pllu” | + f¢u—(u+)2d)d[bllbfllzllu_ll2 + fqﬁm(u_)de] > 0.
Q Q

Hence, due to A,(u*) > 0, there exists exactly one solution (/,, n,) with [, n, > 0 for system (2.9).
For u € H,,, we define ¢, : R,?> = R by

o (l,n) = J(lu* + nu").

Next, we show that
eullyyny) = J(u" +nu”) = max J(u® + nu),
n>

where (/,, n,) is the unique solution of system (2.9).
Straightforward computations yield

oy, oy,
Vou(l.n) = ( 501 (L,n), %(l, n))

=" +nu),u™ ), (J' (" +nu),u”))

1 1
= (7(.]’(luJr +nu), uty, —(J (lu* +nu),nu")|,
n

which means that a positive pair (/, n) is a critical point of ¢, if and only if /u* + nu~ € M. Then we
deduce that (/,, n,) with [, n,, > 0 is the unique critical point of the function ¢,.

Electronic Research Archive Volume 31, Issue 5, 2959-2973.



2965

Since u € H,,, we get

28 m,) = Asu) + 3B, (") + m2(bllu Pl + [, gu-(u*)?dx] = 22B,(u™) < 0,
2t (lom,) = Aa(u) + 3B, (u) + RIblu Pt | + [, ¢(u)?dx] = 2n2B,(u7) < 0,
2

Ot (L) = 2 bl Pl | + [, ¢ ()],

ey

(L ) = 20y [ PNt IP + [ o () ?dx].

(2.10)

Setting Q := 28l n,)244(1,., n,) — T(1,., m,) 2 (1., m,), it follows that
Q =4Ln, B, (u")B, (") — 4L [bllu*|P|lu”|* + j; G- (uh)’dx]
(Bl 1Pl + fgfﬁm(u_)zdﬂ
=4LneA B, (u*)By(u”) — [bllu* Pl P + fg - (u* ) dx]

(bl 1Pl + f i (™) dx]}
Q
>0,

which implies that the Hessian matrix of ¢, is negative definite at (/,,n,). Then we have ¢,(l,,n,) =
maxy o ¢,(lu™ + nu™), that is

Jut +nu) = max J(lut + nu).
>
When I, > n, > 0. For l,u* + n,u” € M, we have

{ LB () + n2(bll P2 + [ u-(u™)dx] = ~A(ur),

2 - 2 11211112 -2 _ (2.11)
1, B (u™) + L[B|le ||| ] +f9¢u+(u )7dx] = A (™).
And (J'(u),u*) < 0 implies
bllulPllu*l* + f%(bti)zdx —,uf u*[*dx < —A(u*) < 0. (2.12)
Q Q

By (2.11) and (2.12) we have
~2A*) > Bl Pl + f $uu*)dx — f i [dx]
Q Q
= LB, (u*) + bllu* [Pl | + f¢u—(u+)2dx]
Q

> 2B, (u") + 2 [l |Pllu|P + f ¢ (u* Y dx]
Q
= —-A,(u").

Due to A (u*) > 0, we getthat0 < n, <[, < 1.
When n, > [, > 0, with similar discussion we get 0 < [, < n, < 1. In conclusion, we obtain that
0<l,n, <l1.
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Lemma 2.3. Assume that A < aly, u > u, then for all u € M there exists o > 0 satisfying ||u*|| > o

and m > 0.

Proof. For any u € M, we have

allu*IP + bl + f%(ui)zdx - /lf u*Pdx = ,Ltf ju*[*dx.
Q Q Q

When 0 < A < ad;, by Sobolev inequalities, we obtain that

A + + +
0<(a- /1—)||u*||2 < allu|* - ﬂf |u*|*dx
1 Q

< allu*|* + bllulPllu| + frbu(ui)zdx - /lf lu**dx
Q Q

=u f u*|*dx
Q

< uCllult,

thus
a/ll -4

|| >
uCa,

=0 > 0.
When A < 0, with similar discussion we have

0 < allu®|)? < allu*|* - /lf lut|>dx
Q

< uCllu1,

. [a
”l/t_” > E =0, > 0.

Let o = min{o{, 0}, then ||u*|| > o for all u € M. Furthermore

which shows that

1
J(u) = J(u) - ZU’(M), u)

A
= %nunz— : fg uPdx

1
= ZA/I(M)

1 A 9
> (g — —
> 4(a ﬂl)llull
>
SRy o
> 0.

Thus we obtain that m > 0.
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3. The proof of Theorem 1.1

It is easy for the situation of 4 < 0. Thus we only give the proof in the case of 0 < A < ad;. The
proof of Theorem 1.1 is divided into the following two steps.

Step 1. We testify that J(u) attains its infimum on M.

Let {u,} € M be a minimizing sequence of m, that is,

J(u,) > m as n — oo, 3.1

Without loss of generality, we assume that J(u,) < 2m for all n € N. Then

2m > J(l/ln) = J(l/ln) - i(-]/(un), un)

A
= Zlual” - 5 fg o dx

1
= ZA/I(un)
1
4

% 2
> -
> —(a /ll)llunll ,

which indicates that {u,} is bounded in Hé (Q2). Then there exist a subsequence still denoted by {u,} and
au in Hy(Q) satisfying

— u in H)(Q),
in H\(Q),
S ut in LP(Q), p € [1,6),

—ut ae. xeQ.

<
3

H

<

<
SH SH OSH

—Uu

(3.2)

N

When {u,} ¢ M, we get

+112 +112 21,5012 +1\2
alli;|I° < allu; |1 + bllu,|” e 1] +f¢u,,(u2) dx
Q
:/lflu,f|2dx+yf|u:f|4dx
Q Q
% 2 4
< TilP +u [ et
/11 Q

Then,
1
u f luZ)*dx > (a — —)|lu*|* > 0.
Q /ll

By Lemma 2.3, we get

A —A A — A
f wtdx > LD = L0 > 0,
Q H pa

which yields that u* # 0.
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Since {u,} € M, it follows from Lemma 1.1-(iv), (3.2) and the weakly lower semicontinuity of
norm that

allu*|I? + bllulllle]? + f¢u(u+)2dx
Q

< liminf{allu 1> + bllu|P ;| + fqﬁun(u,f)zdx}
n—oo Q

= lim inf{/lf uZPdx + p f || dx}
n—co Q Q

=1 f lu*Pdx + u f lu*|*dx,
Q Q

(J'(w),u*y < 0. (3.3)

thus

By (2.6) and (2.12), we obtain that u € H,,.
By Lemma 2.2, there exists 0 < [,,n, < 1 such that u := L,u* +n,u” € M. Since the norm is weakly
lower semicontinuous, by (3.2) we have

m< J(u" +nu’)

1
=J(u" +nu) - Z(J'(lubf' +nu), Lu" +nu”)

2 n?
= ZMAA(MJr) + ZMAA(M_)
1 1
< ZA,{(M+) + ZAA(M_)
1
= ZA/I(M)
1
= Z(allull2 — Aluf3)
1
< lim inf{é—l(allunll2 — Aual3)}
1
= liminf{J(u,) — Z(J'(u,,), u,)} = m.
Thus we getl, = n, = 1 and J(u) = m.
Step 2. We testify that J'(u) = 0.
Assume that J’(u) # 0. Since J'(u) is continuous, there exist 9, & > 0 satisfying

)|l = & Yv € Hy(Q) with ||v—ul| < 36. (3.4)

For u € M, we have (J'(u),u*) = 0. From Step 1 and Lemma 2.2, we obtain that (1, 1) is the global
maximum point of J(lu™ + nu™) on R, X R,. Thus

Ju" +nu) < Jw +u)=Jw) =m, for(,n)e Ry, R\, I). (3.5)
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Due to A, (u*) > 0, we can choose a 6; small enough in (0, 1) such that

min A (tu*) > 0. (3.6)

ZE[]—H|,1+9|]

Let 6, € (0, min{%, m}), 6 = min{6;, 6,}. DefineI' := (1 —6,1+0) X (1 — 6,1 + 6) and the function

G:T - Hy(Q) by G(I,n) = lu* + nu~, (I,n) € I. It follows from (3.5) that

m* = max J(G(l,n)) < J(G(1,1)) = m. (3.7)

(l,n)edl’

Lete:= min{’"‘T’"*, ‘%‘5} and S,s :={v e Hé(Q) withv* # 0 : ||[v— u|| < né},n = 1,2. By the deforma-
tion lemma in [32], we get that there exists a deformation n € C([0, 1] X Hé(Q), H(l)(Q)) satisfying

() n(a,v) =vifa=0orifv ¢ J '([m—2e,m+2g]) N S 2

(1) J(n(a,v)) <mforallve Ss with J(v) < mand a € (0, 1];

(i) J(m(a,v)) < J(v) forall v € H(l)(Q) and a € [0, 1].

Firstly we will show that

max J(n(a, G(l, n))) < m. (3.8)
{(L.n)eT’}

By Lemma 2.2, Step 1, (3.5) and the expression of G(I, n), we obtain that J(G(I,n)) < m. Also,
16, n) = ul* = ™ + nu™ — "+ u)I
< 2= D2t IP + (= Dl I1P)
< 267 |jul?
<&,

this means G(/,n) € S5. Accordingly (i1) implies

ma J ,G(l, <m,Va € (0,1].
{(l,n)GF,Q(fn)eS(;} (n(a G, n))) <m,Va € ( ]

From Lemma 2.2 and (iii), we can deduce that

J(n(a, G(L, n))) < J(G(l,n)), forall G(l,n) € Hé(Q) and a € [0, 1],

furthermore,

max J(n(a,G(,n
{(Ln)el,G(Un)eS s} (n(a, G, n)))

< max J(G(,n) <m,Ya € [0,1].
{(Lmel,G(Ln)eS s}

To sum up, (3.8) can be concluded.
Since 1 and A,(u) are continuous, by (3.6), there exists @, € (0, 1) satisfying

A (7" (a0, G(I,n))) > 0,Y(l,n) €T. (3.9)
Secondly, we prove that

(o, GI) N M £ 0. (3.10)
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Set g(1,n) = n(ay, G(l,n)), and consider the maps @, P, : ' - R X R defined as

O (Ln) = S Uu" +nu), "y, (J' (u" +nu),nu")),
D,(1,n) = ((J'(g(l,n)), g, n)), (J'(g(l,n)), g (I,n))).

Since u € M, we have

O (L, =S W +u),u" ) {J W +u),u))
= ('), u"),(J'(w),u”)) = (0,0),

which implies that (1, 1) is the only isolated zero of ®(/,n). By the degree theory, we obtain that
deg(®,,I,0) = 1.
For & < %, we have

m" := max J(G(,n)) = max J(lu" +nu") <m-3e <m-2e.
(Lm)edr (Lm)edr

Therefore, G(I,n) ¢ J~'([m — 2&,m + 2¢]) with (I,n) € 0T, and G(I,n) ¢ J '([m —2e,m + 2&]) N S »5. It
follows from (i) that

n(a,G(l,n)) = G(,n),¥(,n) € oI and a € [0, 1].
Hence, we conclude that
®,(l,n) = Oy(I,n),Y(,n) € dl.
The boundary value property of the degree suggests that
deg(®,,1',0) = deg(®,,1',0) =1,
which indicates that there exists ([, n,) € I" such that ®,(/,, n,) = 0. Namely,
Do (L ) = (I (8(Lus 1)), & (Lus 1)), <" (8(Lus ), & (Lus 1)) = 0,

which means g(l,, n,)) = n(ay, G(1, n)) € M. Thus n(ay, G(I')) N M # 0, which contradicts with (3.8).
Thus we obtain that J'(#) = 0 and J(u) = m. We complete the proof of Theorem 1.1.
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