Research article Special Issues

Multiple nontrivial periodic solutions to a second-order partial difference equation

  • Received: 21 October 2022 Revised: 09 January 2023 Accepted: 15 January 2023 Published: 31 January 2023
  • In this article, applying variational technique as well as critical point theory, we establish a series of criteria to ensure the existence and multiplicity of nontrivial periodic solutions to a second-order nonlinear partial difference equation. Our results generalize some known results. Moreover, numerical stimulations are presented to illustrate applications of our major findings.

    Citation: Yuhua Long, Dan Li. Multiple nontrivial periodic solutions to a second-order partial difference equation[J]. Electronic Research Archive, 2023, 31(3): 1596-1612. doi: 10.3934/era.2023082

    Related Papers:

  • In this article, applying variational technique as well as critical point theory, we establish a series of criteria to ensure the existence and multiplicity of nontrivial periodic solutions to a second-order nonlinear partial difference equation. Our results generalize some known results. Moreover, numerical stimulations are presented to illustrate applications of our major findings.



    加载中


    [1] J. S. Yu, J. Li, Discrete-time models for interactive wild and sterile mosquitoes with general time steps, Math. Biosci., 346 (2022), 108797. https://doi.org/10.1016/j.mbs.2022.108797 doi: 10.1016/j.mbs.2022.108797
    [2] Y. H. Long, L. Wang, Global dynamics of a delayed two-patch discrete SIR disease model, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105117. https://doi.org/10.1016/j.cnsns.2019.105117 doi: 10.1016/j.cnsns.2019.105117
    [3] Z. M. Guo, J. S. Yu, Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China, Ser. A Math., 46 (2003), 506–515. https://doi.org/10.1007/BF02884022 doi: 10.1007/BF02884022
    [4] J. S. Yu, Z. M. Guo, X. F. Zou, Periodic solutions of second order self-adjoint difference equations, J. London Math. Soc., 71 (2005), 146–160. https://doi.org/10.1112/S0024610704005939 doi: 10.1112/S0024610704005939
    [5] Y. H. Long, J. L. Chen, Existence of multiple solutions to second-order discrete Neumann boundary value problems, Appl. Math. Lett., 83 (2018), 7–14. https://doi.org/10.1016/j.aml.2018.03.006 doi: 10.1016/j.aml.2018.03.006
    [6] Z. Zhou, J. X. Ling, Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with $\phi_{c}$-Laplacian, Appl. Math. Lett., 91 (2019), 28–34. https://doi.org/10.1016/j.aml.2018.11.016 doi: 10.1016/j.aml.2018.11.016
    [7] Y. H. Long, Existence of two homoclinic solutions for a nonperiodic difference equation with a perturbation, AIMS Math., 6 (2021), 4786–4802. https://doi.org/10.3934/math.2021281 doi: 10.3934/math.2021281
    [8] J. H. Kuang, Z. M. Guo, Heteroclinic solutions for a class of p-Laplacian difference equations with a parameter, Appl. Math. Lett., 100 (2020), 106034. https://doi.org/10.1016/j.aml.2019.106034 doi: 10.1016/j.aml.2019.106034
    [9] X. C. Cai, J. S. Yu, Existence theorems of periodic solutions for second-order nonlinear difference equations, Adv. Differ. Equations, 2008 (2007), 247071. https://doi.org/10.1155/2008/247071 doi: 10.1155/2008/247071
    [10] H. P. Shi, Periodic and subharmonic solutions for second-order nonlinear difference equations, J. Appl. Math. Comput., 48 (2015), 157–171. https://doi.org/10.1007/s12190-014-0796-z doi: 10.1007/s12190-014-0796-z
    [11] Z. G. Ren, J. Li, H. P. Shi, Existence of periodic solutions for second-order nonlinear difference equations, J. Nonlinear Sci. Appl., 9 (2016), 1505–1514. http://dx.doi.org/10.22436/jnsa.009.04.09 doi: 10.22436/jnsa.009.04.09
    [12] S. Ma, Z. H. Hu, Q. Jiang, Multiple periodic solutions for the second-order nonlinear difference equations, Adv. Differ. Equations, 2018 (2018), 265. https://doi.org/10.1186/s13662-018-1713-9 doi: 10.1186/s13662-018-1713-9
    [13] S. S. Cheng, Partial Difference Equations, Taylor and Francis, 2003. https://doi.org/10.1201/9780367801052
    [14] Y. H. Long, X. Q. Deng, Existence and multiplicity solutions for discrete Kirchhoff type problems, Appl. Math. Lett., 126 (2022), 107817. https://doi.org/10.1016/j.aml.2021.107817 doi: 10.1016/j.aml.2021.107817
    [15] Y. H. Long, Multiple results on nontrivial solutions of discrete Kirchhoff type problems, J. Appl. Math. Comput., 2022. https://doi.org/10.1007/s12190-022-01731-0 doi: 10.1007/s12190-022-01731-0
    [16] Y. H. Long, Nontrivial solutions of discrete Kirchhoff type problems via Morse theory, Adv. Nonlinear Anal., 11 (2022), 1352–1364. https://doi.org/10.1515/anona-2022-0251 doi: 10.1515/anona-2022-0251
    [17] H. Zhang, Y. H. Long, Multiple existence results of nontrivial solutions for a class of second-order partial difference equations, Symmetry, 15 (2023), 6. https://doi.org/10.3390/sym15010006 doi: 10.3390/sym15010006
    [18] H. Zhang, Y. Zhou, Y. H. Long, Results on multiple nontrivial solutions to partial difference equations, AIMS Math., 8 (2023), 5413–5431. https://doi.10.3934/math.2023272 doi: 10.3934/math.2023272
    [19] Y. H. Long, H. Zhang, Three nontrivial solutions for second-order partial difference equation via morse theory, J. Funct. Spaces, 2022 (2022), 1564961. https://doi.org/10.1155/2022/1564961 doi: 10.1155/2022/1564961
    [20] Y. H. Long, H. Zhang, Existence and multiplicity of nontrivial solutions to discrete elliptic Dirchlet problems, Electron. Res. Arch., 30 (2022), 2681–2699. https://doi.org/10.3934/era.2022137 doi: 10.3934/era.2022137
    [21] S. H. Wang, Z. Zhou, Periodic solutions for a second-order partial difference equation, J. Appl. Math. Comput., 69 (2022), 731–752. https://doi.org/10.1007/s12190-022-01769-0 doi: 10.1007/s12190-022-01769-0
    [22] S. J. Du, Z. Zhou, On the existence of multiple solutions for a partial discrete Dirichlet boundary value problem with mean curvature operator, Adv. Nonlinear Anal., 11 (2022), 198–211. https://doi.org/10.1515/anona-2020-0195 doi: 10.1515/anona-2020-0195
    [23] J. Cheng, P. Chen, L. M. Zhang, Homoclinic solutions for a differential inclusion system involving the p(t)-Laplacian, Adv. Nonlinear Anal., 12 (2023), 20220272. https://doi.org/10.1515/anona-2022-0272 doi: 10.1515/anona-2022-0272
    [24] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, American Mathematical Society, Providence, 1986. https://doi.org/10.1090/cbms/065
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1119) PDF downloads(121) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog