Research article Special Issues

Solving the conformable Huxley equation using the complex method

  • Received: 16 September 2022 Revised: 18 December 2022 Accepted: 20 December 2022 Published: 09 January 2023
  • We apply the complex method to build new exact solutions for the conformable Huxley equation. The results show that abundant new exact solutions were constructed, which extends the results of Cevikel, Bekir and Zahran. Further, we extend the undetermined form for the exponential function solutions in the complex method.

    Citation: Guoqiang Dang, Qiyou Liu. Solving the conformable Huxley equation using the complex method[J]. Electronic Research Archive, 2023, 31(3): 1303-1322. doi: 10.3934/era.2023067

    Related Papers:

  • We apply the complex method to build new exact solutions for the conformable Huxley equation. The results show that abundant new exact solutions were constructed, which extends the results of Cevikel, Bekir and Zahran. Further, we extend the undetermined form for the exponential function solutions in the complex method.



    加载中


    [1] C. Rogers, W. F. Shadwick, Bäcklund Transformations and Their Applications, Academic Press, New York, 1982.
    [2] M. A. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511623998
    [3] C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511606359
    [4] S. T. R. Rizvi, M. Younis, D. Baleanu, H. Iqbal, Lump and rogue wave solutions for the Broer-Kaup-Kupershmidt system, Chin. J. Phys., 68 (2020), 19–27. https://doi.org/10.1016/j.cjph.2020.09.004 doi: 10.1016/j.cjph.2020.09.004
    [5] W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60 (1992), 650–654. https://doi.org/10.1119/1.17120 doi: 10.1119/1.17120
    [6] S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC Press, New York, 2004. https://doi.org/10.1201/9780203491164
    [7] V. E. Tarasov, No nonlocality. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 62 (2018), 157–163. https://doi.org/10.1016/j.cnsns.2018.02.019 doi: 10.1016/j.cnsns.2018.02.019
    [8] A. A. Abdelhakim, J. A. T. Machado, A critical analysis of the conformable derivative, Nonlinear Dyn., 95 (2019), 3063–3073. https://doi.org/10.1007/s11071-018-04741-5 doi: 10.1007/s11071-018-04741-5
    [9] A. A. Hyder, A. H. Soliman, A new generalized $\theta$-conformable calculus and its applications in mathematical physics, Phys. Scr., 96 (2021), 015208. https://doi.org/10.1088/1402-4896/abc6d9 doi: 10.1088/1402-4896/abc6d9
    [10] A. A. Hyder, A. H. Soliman, Analytical manner for abundant stochastic wave solutions of extended KdV equation with conformable differential operators, Math. Methods Appl. Sci., 45 (2022), 8600–8612. https://doi.org/10.1002/mma.7317 doi: 10.1002/mma.7317
    [11] A. A. Hyder, M. A. Barakat, A. H. Soliman, A. A. Almoneef, C. Cesarano, New analytical solutions for coupled stochastic Korteweg-de Vries equations via generalized derivatives, Symmetry, 14 (2022), 1770. https://doi.org/10.3390/sym14091770 doi: 10.3390/sym14091770
    [12] A. A. Hyder, A. H. Soliman, C. Cesarano, M. A. Barakat, Solving the Schrödinger-Hirota equation in a stochastic environment and utilizing generalized derivatives of the conformable type, Mathematics, 9 (2021), 2760. https://doi.org/10.3390/math9212760 doi: 10.3390/math9212760
    [13] W. J. Yuan, Y. H. Wu, Q. H. Chen, Y. Huang, All meromorphic solutions for two forms of odd order algebraic differential equations and its applications, Appl. Math. Comput., 240 (2014), 240–251. https://doi.org/10.1016/j.amc.2014.04.099 doi: 10.1016/j.amc.2014.04.099
    [14] W. J. Yuan, Y. Z. Li, J. M. Lin, Meromorphic solutions of an auxiliary ordinary differential equation using complex method, Math. Meth. Appl. Sci., 36 (2013), 1776–1782. https://doi.org/10.1002/mma.2723 doi: 10.1002/mma.2723
    [15] W. J. Yuan, Y. D. Shang, Y. Huang, H. Wang, The representation of meromorphic solutions of certain ordinary differential equations and its applications, Sci. Sin. Math., 43 (2013), 563–575. https://doi.org/10.1360/012012-159 doi: 10.1360/012012-159
    [16] G. Dang, Meromorphic solutions of the seventh-order KdV equation by using an extended complex method and Painlevé analysis, ScienceAsia, 49 (2023), 108–115. https://doi.org/10.2306/scienceasia1513-1874.2022.133 doi: 10.2306/scienceasia1513-1874.2022.133
    [17] G. Dang, New exact solutions of the sixth-order thin-film equation with complex method, Partial Differ. Equations Appl. Math., 4 (2021), 100116. https://doi.org/10.1016/j.padiff.2021.100116 doi: 10.1016/j.padiff.2021.100116
    [18] G. Dang, Meromorphic solutions of the (2+1)- and the (3+1)- dimensional BLMP equations and the (2+1)- dimensional KMN equation, Demonstr. Math., 54 (2021), 129–139. https://doi.org/10.1515/dema-2021-0009 doi: 10.1515/dema-2021-0009
    [19] G. I. Dolgikh, D. P. Kovalev, P. D. Kovalev, Excitation of under-ice seiches of a sea port of the sea of Okhotsk, Dokl. Earth Sci., 486 (2019), 651–653. https://doi.org/10.1134/S1028334X19060011 doi: 10.1134/S1028334X19060011
    [20] W. X. Ma, Complexiton solutions to the Korteweg-de Vries equation, Phys. Lett. A, 301 (2002), 35–44. https://doi.org/10.1016/S0375-9601(02)00971-4 doi: 10.1016/S0375-9601(02)00971-4
    [21] I. Kovacic, M. J. Brennan, The Duffing Equation: Nonlinear Oscillators and their behavior, John Wiley and Sons, London, 2011. http://dx.doi.org/10.1002/9780470977859
    [22] A. C. Cevikel, A. Bekir, E. H. M. Zahran, Novel exact and solitary solutions of conformable Huxley equation with three effective methods, J. Ocean Eng. Sci., 2022 (2022). https://doi.org/10.1016/j.joes.2022.06.010
    [23] R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [24] S. Lang, Elliptic Functions, 2$^{nd}$ edition, Springer Verlag, New York, 1987. https://doi.org/10.1007/978-1-4612-4752-4
    [25] A. Eremenko, Meromorphic traveling wave solutions of the Kuramoto-Sivashinsky equation, arXiv preprint, (2006), arXiv: nlin/0504053. https://doi.org/10.48550/arXiv.nlin/0504053
    [26] W. J. Yuan, Z. F. Huang, M. Z. Fu, J. C. Lai, The general solutions of an auxiliary ordinary differential equation using complex method and its applications, Adv. Differ. Equations, 2014 (2014). https://doi.org/10.1186/1687-1847-2014-147
    [27] R. Conte, T. W. Ng, C. F. Wu, Hayman's classical conjecture on some nonlinear second-order algebraic ODEs, Complex Var. Elliptic Equations, 60 (2015), 1539–1552. https://doi.org/10.1080/17476933.2015.1033414 doi: 10.1080/17476933.2015.1033414
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1271) PDF downloads(89) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog