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1. Introduction

Differential equations are used to describe dynamic evolutionary processes in natural sciences,
engineering and technology. There are many mathematicians working to construct methods for
computing exact solutions to differential equations: for example, the Bicklund transformation
method [1], the inverse scattering method [2], the Darboux transformation method [3], the Hirota
bilinear method [4], the tanh-function method [5], the Homotopy analysis method [6], etc. In recent
years, there have been many results in constructing exact solutions of partial differential equations
with a finite number of integer-order derivatives, such as the conformable fractional derivative, the
M-fractional derivative, the alternative fractional derivative, the local fractional derivative and the
Caputo-Fabrizio fractional derivatives with exponential kernels.

In Tarasov’s points, the above mentioned differential operators are not fractional, with exponential
kernels that cannot be considered as fractional derivatives of non-integer orders [7]. Therefore, the
method designed for differential operators with integer orders can be embedded in the above mentioned
type of differential equations with derivative variants.

For the question of how to distinguish between differential equations with integer-order and with
fractional order, Tarasov introduced the nonlocality principle to prove that the conformable fractional
derivative with exponential kernels cannot be considered as fractional derivatives of non-integer
orders [7]. The derivatives of integer orders are determined by properties of differentiable functions
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only in the infinitely small neighborhoods of the considered point but not nonlocal. In the sense of
conformable derivatives, the fractional differential problems become differential problems with
integer-order derivatives that may no longer properly describe the original fractional physical
phenomena [8]. Many mathematicians have worked on improving the conformable derivative to make
it have more complete properties or apply more; for examples, see [9-12].

There are many ways of find exact solutions of differential equations, but no single method can
handle all types of solutions. The complex method [13—-15] and its variants, such as the extended
complex method [16], can be used to construct meromorphic solutions for certain partial differential
equations. Several researchers have tried to apply the complex method to find exact solutions of some
higher-order or higher-dimension partial differential equations; for examples, see [17, 18]. The
complex method will be used here because this kind of method can construct more types of solutions
in the complex domain, such as elliptic function solutions, simply periodic function solutions and
exponential function solutions. Also, this is a good attempt to solve differential equations with
conformal derivatives by the complex method.

Shallow waters exhibit nonlinear phenomena in the propagation and transformation of waves.
Nonlinear differential equations, such as the Huxley equation, describe spectral energy transfer for
waves of finite amplitude in shallow waters above a flat seafloor [19,20]. Chaotic oscillations usually
occur in nonlinear dynamical systems. These systems can be represented by the Huxley equation with
nonlinear oscillations and external periodic excitation [21].

Although the sub-equation method, the Kudryashov method and the exp-function method have been
applied to build exact solutions for the conformable Huxley equation [22] (see Eq (3.1)), we remain
committed to finding abundant new exact solutions using the complex method. The new exact solutions
may contribute to a much better understanding of the features of the solutions of the conformable
Huxley equation.

2. Preliminaries

The basic definition and theorems of conformable derivatives [23] are as follows.

Definition 2.1. Let g : (0, 00) — R be a function. For all k > 0,a € (0, 1), the CFD of g for order « is
defined by
g (k + gkl‘”) —g(k)

g

2.1)

Ta(g(0) = lim

Lemma 2.1. For a € (0,1], if a function g : (0,+00) — R is a-differentiable at ty > 0, then g is
continuous at t.

Lemma 2.2. Let f and g be a-differential at a point t > 0, a € (0, 1].

T, (af +bg) =aT,(f)+ bT,(g), forall a,b € R,
T, (") = pt'™@, forall p € R,
T,(1) = 0, for all constant functions f(t) = A,
To(f8) = fTa(8) + gTo(f) and
T (z) _ gTa(f) - fTa(g)
(07 - 2 .
8

(2.2)
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If g is differentiable,

_ 1—af£g
To(9)1) =1 7 (0. (2.3)

Giving a nonlinear conformable partial differential equation with two independent variables,
0%u ou u u

— Y ——,---]=0,0 <1. 2.4
b6 0x 9 O =« @9

Taking a traveling wave transformation u(x,t) = w(z),z = x — c% (c 1s the speed of wave), on Eq
(2.4) with

0" a 0™ , 0 0 o & 0’
—— = —C, =C oy T T T T (2'5)
ot o0& ore 082 0x O Ix*> 0&2
Eq (2.4) will be reduced to a nonlinear ordinary differential equation (ODE),
ow,w,w”, w”,---)=0. (2.6)

Weierstrass elliptic function [24] ¢(z) = ¢(z, €2, g3) 1s @ meromorphic function with two periods
2wi, 2w, and satisfies

(9'(2)* = 49(2)° — g20(2) — g5, (2.7)

with the invariants g, = 60s4, g3 = 140s¢ and discriminant A(g,, g3) # 0.
Furthermore, 9'(-z) = —¢’(2), 29" (z) = 129%*(z) — g2, 9" (2) = 129(2)9’(2), - - -, any kth derivatives
2 4
of ¢ can be deduced by these identities, and ¢ has the Laurent series expansion ¢(z) = Ziz + 8-+ 5+
O(|z®), with the addition formula
1 9'(2) + 9'(20)
Pz - 20) = —9(2) — p(zo) + ;[ o P, 2.8)
4" p(2) — 9(20)
The basic related definitions and lemmas of the complex method [13] are as follows.
Given a nonlinear ODE

P(w,w',--- ,w™) =0, (2.9)

P is a polynomial in w(z) and its derivatives with constant coefficients.
We assume that the Laurent series expansion of meromorphic solutions of Eq (2.9) are in the form
of

(o)

W@ = ) ak-2) (> 0). (2.10)

k=—q
Definition 2.2. If there are exactly p distinct formal meromorphic Laurent series

(o)

W) = ) ad @.11)

k=—q

satisfying Eq (2.9), we say Eq (2.9) satisfies the {p, q) condition. If only determine p distinct principal
parts Z,::l_q czX, we say Eq (2.9) satisfies the weak {p, q) condition.

Eremenko [25] defined that a meromorphic function f(z) belongs to the class W if f(z) is an elliptic
function, a rational function of ¢**(a € C) or a rational function of z.

Electronic Research Archive Volume 31, Issue 3, 1303-1322.



1306

Lemma 2.3. ( [13, 15]) Suppose that an equation
Pw,w, -+ ,w™) = bw" (2.12)

satisfies the {p, q) condition, where p, I, m, n € N, deg Pw,w’,--- ,w™) < n. Then, all meromorphic
solutions w belong to the class W. Furthermore, each elliptic solution with a pole at 7 = 0 can be
written as

-1

o (“Deo; di7? 1 9@+ Bi, 9'(2) + B; (=Deyj di?
W) = ZZ e UrEey (>)+Z Sy Z;(J Dy gEP@ + o 213)

i=1 j=2 i=1

i
where c_;; are given by (2.11), B} = 4A] — g,A; — g3, Z c_i1 =0, andcy € C.
i=1
Each rational function solution w := R(2) is of the form

I 4
R(z) = Z Z o Zl)} + co, (2.14)

with (< p) distinct poles of multiplicity q.
Each simply periodic solution is a rational function R(§) of & = e*(a € C). R(§) is of the form

q
RE =D == Tyt (2.15)

l
i=1 j=1
where R(€) has (< p) distinct poles with multiplicity q.

By the former discussion, the complex method can be described concerning Eq (2.4) as follows:

Step 1 Substituting the transform u(x,t) = w(z),z = Kx — c%, with Eq (2.5) into Eq (2.4) and
obtaining the nonlinear ODE Eq (2.6).

Step 2 Substituting (2.11) into Eq (2.6) to determine that the (p, g) condition holds.

Step 3 By indeterminant relations (2.13)—(2.15), building the elliptic, rational and simply periodic
solutions w(z) of Eq (2.6) with pole at z = 0, respectively.

Step 4 By Lemma 2.3 mainly, obtaining all meromorphic solutions w(z — zo).

Step 5 Substituting the inverse transform 7! into these meromorphic solutions w(z — zy), we get all
exact solutions u(x, t) of the original given Eq (2.4).

3. Proof

The conformable equation is defined as

0" 0?
ﬁu(x 1 — PP 7 ulx, 1) = Bulx, )(1 — ulx, ) (u(x, t) —7), (3.1
where a € (0, 1], 8 is a non zero constant, and y € (0, 1). Equation (3.1) can be written as

1% 2

%u(x r— 8 u(x 0+ Bul(x, 1) — Bl + YuP(x, 1) + Byu(x,t) =0, O0<a<1. 3.2)
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Using the transformations u(x,t) = u(z),z = Kx — %= in Eq (3.2), where K and A are non-zero
constants, it follows that

KW’ + A’ — Byu + B(1 +y)u? — pu® = 0. (3.3)

If 1 = 0 and 8 = 0, Eq (3.3) will reduce to the equation K*u” — Su® = 0. Then, multiply «’, and it
will reduce to a first-order Briot-Bouquet differential equation.

If y = —1, Eq (3.3) will reduce to the equation K?u” + Au’ + Su — Bu® = 0, and its solutions were
investigated in [26].

For Eq (3.3), we assume y # —1. Obviously, Eq (3.3) has no nonconstant polynomial solution and
has no nonconstant transcendental entire solution by using the Wiman-Valiron theory. Therefore, we
need to consider the nonconstant meromorphic solutions of Eq (3.3) with at least one pole on C.

Assume that a meromorphic solution u(z) satisfies Eq (3.3), and if u(z) has a movable pole at z = 0,
then in a neighborhood of z = 7, the Laurent series of u is of the form ) ;. g c(z—20)% (g > 0, c_q #0).
Substituting the Laurent series into Eq (3.3), balancing the terms u” and w?, we have p = 2,¢ = 1, and
then

’ Co =

N _\/-\[ 2Ky \VB+2KNE- V2 V2(B(Y v+ 1)K~ %)
)k

0K VB T 18 VB K ’
: (3.4)
YR 020 g 3By ¢ )R- E)aE
cz_ SAVBKS :
S T oy POV T SR ) Lotk
= — K 0 , 1:_ ,
6K VB 18 B K3 s
B K3(7 2)(y+1),32 —‘(,3(72—7+1) K> 2/12)/1\/— .
s SAVEK

By comparing the coefficients of z in the expansion of K?u”’ + Au’ and —Byu + (1 + y)u® — pu’, we
have

0. 2AB 2By Y By NBEN2  2V22' NBEN2ZY VBEVZy
PT27K2 27K T 9K T 9K2 9K3 | 27K5+B 9K3 9K3

0.0 2B NBUN2Y NBEN2y  2V22' NBEN2 Ay By 24By°) (30)
’ 271<2 9K3 9K3 2IKSNB 9K®  9K?  9K2  27K?

= 0.

Then, Eq (3.6) can be reduced to

_ 22 _2173+M2+ Ay g /lz\/i_/lz\/iszr/lz\/iy B+ 2V2 24
27K* 27K* 9K?* 9K? 27K5\B

~ 9K3 9K3 9K3

2 3 2 2 2 2 2 2 2 4
._/ly+/ly+/ly_/lﬁ+/l\/_y /l\/_y/l \/-_ V21 _o.
27K* " 9K2 ' 9K?> 27K? 9K> 9K> 27K5 B

3.7
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or

1\’ 2
—) KB - 7) (K*(y+ 175 -227) 2> = 0. (3.8)

4(K* (y =27 B~ 22) ((7 -5

Equation (3.3) has two integer Fuchs indexes, —1,4. From Eq (3.6), we know the coefficient cj is
an arbitrary constant, and the other coeflicients cy4, cs,- - - can be represented using c3. Then, Eq (3.3)
satisfies the < p, ¢ > condition, and Eq (3.3) is integrable. Therefore, by Lemma 2.3, all meromorphic
solutions of Eq (3.3) belong to the class W.

According to the complex method, we will build the meromorphic solutions of Eq (3.3).

Case 1. Rational solutions.

According to (2.14), we assume that the undetermined form of rational solutions of Eq (3.3) with a
pole at zyp € C is given by

+\/§\/EK+2K7\/B+2K\/B$/1\/§
-2 6K \B .

From Eq (3.8), we have y = 0, 2> = 2BK* or A = 1pK* v = 1, % = 28K? or 2* = 1 BK*;
y =2, =32BK*% vy =1,2% = 2BK* From Eq (3.9), only the cases y = 0, 1 make Eq (3.3) have the
following rational solutions.

When y = 0 and A = + V2 B K, we have the following rational solution:

\/5\/%1(

uz) =c_1(z—20)" +¢o = (3.9)

uz) = + (3.10)
=20
where 7 is an arbitrary constant.
When y = 1 and A = + V2 \BK, we have the following rational solution:
V2 |1k
uiz) =F——+ 1. (3.11)
Z—20

Then, substituting z = x — c’(—j into the rational solutions (3.10) and (3.11), we get the following
exact solutions for Eq (3.1):

V2 (JEK
uiz) =+t———, (3.12)
X—C; — 20
V2 5K
uiz) =F———+ L. (3.13)
x—ck -1z

Case 2. Elliptic function solutions.

Case 2.1

By (2.13) and Z,-z:] c_1 = 0, we can assume the following undetermined form of elliptic solutions
will satisty Eq (3.3):

Electronic Research Archive Volume 31, Issue 3, 1303-1322.
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a9+ B B V2 \/EK(P’(Z;gZ’gS) +B) V2 \/EK(P/(Z;gz’gj)) +B2)
u(z)—Z——+C0— -

+ ¢,
L2 o) - A 2P(z:82.83) — A, 2 (P(z:82,83) - As) ’
(3.14)
where c( is a constant. We noted that the Laurent series of (3.14) are as follows:
V2 \JiK (B - B2
uz) =-v2 KA +ANZ+ . +0(2). (3.15)

However, the term of z_; vanished in (3.14), compared to the Laurent series (3.4). It follows that Eq
(3.3) has no elliptic solution in the form of (3.14).

Case 2.2

To reduce the complexity of the calculation, rewrite Eq (3.3) into the following form:

u’ +Au + Bu+ Cu® + Du’ =0, (3.16)

where A = %, B = —%, C= ‘%, D = —k’%. By (2.13), we assume that the following forms of elliptic

solutions satisfy Eq (3.3):

1 "(z, 22, +B
W) = 9'(z,82,83) + Bi e (3.17)

\V=-2D 9(z, &2, 83) — Ai

I 9'(z,82.83) + B
W(Z) = — + Co. (318)
V=2D 9(z, &2, 83) — Ay 0

Comparing the coefficients in the Laurent series of solutions w(z) in (3.17) and (3.18) with (3.4) and
(3.5), we have the following solutions:

V22D 9(z.82,83)~ A1 V22D  V=2D V=2D’

2 2 5 3
where C = AV=2D, A; = & + £ B, =0, g = W2 o o BUB) 4ng g = 4 Solution (3.19)
must degenerate into a rational function, and

V22D 9(z.82,85) — A1 V22D’

A242B) A242B)

where C = —~AV=2D, Ay =L + £ B =0, g, = L2200 - _(1'20)
Therefore, we obtain the following solutions of Eq (3.3):
V2K? 1 A

w(z) = - (3.21)

VB - V28K
\/_

where (1 +y) = AK—ZM,,B)/ = £, and
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_ 1 9'(z-720,82,83) + Bi A
w(z) = - - : (3.22)
V-2D 9(z — 20,82, 83) — A1 |[28K>
e 2K2py-22)" 2K28y-22)} . :
where B(1 +y) = ——=, A1 = %12(4 - %’ B =0,g = ( 1[;);(8 ) , 83 = ( 21[2(12 ) , and z is arbitrary.

Case 2.3
Rewrite Eq (3.3) into the following form:

u’ + %u' - %u(u - Du-y)=0. (3.23)

By Lemma 4.5 in the [27], we have ¢ = 0,¢» = 1,95 = 7, and Eq (3.23) has nonconstant
meromorphic solutions if and only if

A A A
S 1G5 +a+a-2a0-75 +a+4;- 200 =0, (3.24)

A _ 24i—q9j—=qx _ —9qit2q9j—qk

K2~ u -

where i = + /27152, (ijk) is any permutation of (123). Further, for A # 0 and
Eq (3.23) has the following elliptic solutions:

_ 4k,

_ ._,50’(6 ,1 —zO;gz,O)
4i — Gk -5t , 20, &> arbitrary. (3.25)

2 0 (e_qi;qkz - 20,82, 0)

w(z) = qr —

Then substituting z = x — c’g into the solution (3.25), yielding the corresponding exact solutions for
Eq (3.1) instantly.

Case 3. Exponential function solutions.

We only consider the case of c_; = V2 \/g K, for in the case of c_; = — V2 \/g K, which we omit

here, the operation is the same.
Case 3.1
By (2.15), we assume that the undetermined form of the simply periodic solutions of Eq (3.3) is

given by
V2 ik 2Ky-avV2 Ji+2K
B Y B
= +

= e — ¢ 6K ’

C-1

e — ¢

w(z) = (3.26)

where ¢ € C is a constant.
Substituting (3.26) into Eq (3.3), combining the similar terms in the expansion of Eq (3.3) and
balancing the coefficients, we have

22 \/g K (%0 - 1)
(e — &)

Equation (3.27) obviously has no algebraic solution of . This means that Eq (3.3) does not have a
simply periodic solution in the shape of (3.26).
Case 3.2

=0. (3.27)
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We assume that Eq (3.3) has the following undetermined form of exponential solutions:

(z)
-¢&

where &, ¢y € C are constants, and A(z) is an undetermined function.
Then, substituting (3.28) into Eq (3.3), we have

uz) =

+ co, (3.28)

A(-2K%*7a? + B A%)

Con i oy (3.29)
Therefore, A(z) = i‘ﬁ"T;MK and A = 0 is omitted here.
Case 3.2.1
Substituting (3.28) with A(z) = 2‘\’/% K into Eq (3.3), we have
3 (_2K(y—3(3:0+1)\/ﬁ + 12 (chx n g)) 2K e
=0. (3.30)
VB (e - &)
By solving Eq (3.30), we have
3K*V2a-2K~By-2K~\B+ \/_/l
co = 6K B (3.31)
Then, substituting (3.28) with (3.31) into Eq (3.3), we have
6K2By% — 6By K2 + 6K23 — 3/12
= \/ 3K2 (3.32)
Then, substituting (3.28) with (3.31), (3.32) into Eq (3.3), we have
2 1 1 2,B+ y*\V22 7\/5/1 2 B 2\/_/13_0 (3.33)
7 "9 Tty 9K 9K 2IKNB '
Therefore, we have the following solution:
V2 @e®K 5
T W 3K*V2a-2K\By-2K+\B+ V22 -
uD = g - K75 : (3.34)
provided that @ = + \/6K2ﬁy2_6§;fz+6mﬁ_w, and (%7’3 - é 2 - %7 + %),3 + (ﬁfi - % + %) VB -
2V223 _ 0
27TK3\B
The exponential function solution (3.34) can be reduced to
V2 6K 7 — 6K2By + 6K2 — 3.0 e+ KBy 0K by stk 3
M(Z) =+ . Vok25y2-6K28y+6K25-342 ¢
3VBK|e® - (3.35)

V2 \6K?By*> — 6K°By + 6K’ — 327 - 2B Ky - 2\/_K+/l\/_
6 BK

Electronic Research Archive Volume 31, Issue 3, 1303-1322.
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. 3
provided that (22—7y3 -5V -5y + 27),8 + (7 V24 V‘f + ﬂ) VB - 2272% = 0.

Then, substituting 7z = x — c; into the exponentlal function solution (3.34), we get the following
exact solution for Eq (3.1):

(aeafo—/lta
L 32\ a - 2K By - 2K B+ V24
u(x,t) = i 6K B , (3.36)
) 6K23y2—6fy K2+6K2B—-312 2
provided that & = + oKy e i , and (%)ﬁ —3 -5y + %)IB+(79\§A - 7;/1? + %) VB -
2208 _
27TK3\B 0.
Case 3.2.2
Substituting (3.28) with A(z) = z‘f/% K into Eq (3.3), we have
3<_2K(7—3§0+1)\/B + \/E (Kza + /gl)) 2K ez B
N =0. (3.37)
By solving Eq (3.37), we have
3K2 V2 + 2K By + 2K B + \/_/1
Co = 6K B (3.38)
Then, substituting (3.28) with (3.38) in Eq (3.3), we have
6K?By* — 6By K* + 6K*B — 3/12
a = \/ 3K2 (3.39)
Then, substituting (3.28) with (3.38) and (3.39) into Eq (3.3), we have
1 2 1 2 2v22 21 21 2V2 43
(——72 —y ——y+—),8+(—y V2 +y\/_ AE \/E+L:O. (3.40)
9 27 9 27 9K 9K 9K 27K3 B
Therefore, we have the following solution:
—V2ae®K 3K*V2a+2K+By+2K+\B+ V22
u(z) = + , (3.41)
VB(e* — &) 6K VB
provided that a = \/61(2[372 65252%[(2[3 342, and
2 3
(_%72+% 7’+27)’8+(_ 9\15 +y_ﬁ__ \/_+227\1<Cﬂ =0.
Exponential function solution (3.41) can be reduced to
R e T T e
M(Z) =7 . \/6K2ﬂ72—6/371<22+6K2,8—3/121
3K VB |e b B (3.42)

+xf 2 \J6K2By? — 6B8yK? + 6K — 3% + 2K \By + 2K B + \/_/l
6K \B

Electronic Research Archive Volume 31, Issue 3, 1303-1322.
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Then, substituting z = Kx — c "~ into the exponential function solution (3.41), we get the following
exact solution for Eq (3.1):

2ae® 'K 3K2\2a+ 2K By +2K\B+ \/_/l

u(x, 1) = — + (3.43)
\/B(eaKx—ct" _ é:) 6K \/_
Case 3.3
Substituting
V2ae®K  3K*V2a-2K~By-2K~B+ V221
u(z) = - (3.44)
VB (e — &) 6K \p
into Eq (3.3), we have
2 2
(K4a,2 _ 2,3(7 ;/*'I)K + /;_2) a \/ze(lz
_ =0. (3.45)
2VB (e - K
It follows that PP
3K*a” + 1
= . 4
P 2K2(y* =y +1) (340
Substituting (3.44) with (3.46) into Eq (3.3), Eq (3.3) reduces to an algebraic equation:
Ky+1) (K“oz2 + %2) ()/ - %) (y-2) 3K4“2”2 +3 (7 -y+ 1) (Kza/ - %) (Kza + %)/l
=0. (347
9(y? —y+1) EEL K
By solving Eq (3.47), we have
A A Ay -1
@=z vt A0-D (3.48)

K2Q2y-1)" K*(y-2) K*(y+1
Case 3.3.1
Substituting (3.44) with (3.46) and a = K2(2 1nt0 Eq (3.3), the left hand side of Eq (3.3) reduces
to zero. Therefore, we obtain the following solutlon
Az
e K22y-1)
uz) = —/—. (3.49)

eK2(2y ) — f

Solution (3.49) can be converted to the following form:

cosh( + sinh(

Az Az
cosh(#ﬁ_l)) + sinh(#ﬁ_l)) - &

Then, substituting 7 = Kx — cg into the exponential function solutions (3.49) and (3.50), we get the
following exact solutions for Eq (3.1):

(3.50)

Y
AKx—c i)

e K2@y-n
u((x, 1) = ———, (3.51)

@
/I(Kxfct(—y)

e K2Qy-1) — f

Electronic Research Archive Volume 31, Issue 3, 1303-1322.
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AKx—c'S) A(Kx—c)
cosh(—Kz(2 5 ) + s1nh(—K2(27_1) )
u(x,t) = ) ) :
CcoSs —K2(2 o)t sin oo )~ 3
Case 3.3.2
Substituting (3.44) with (3.46) and @ = — 45— (2

to zero. Therefore, we obtain the following solutlon

3

A
—e KD 4+ ,f

u(z) =

Solution (3.53) can be converted to the following form:

3

- COSh(KZ(z 1)) + Sinh(ﬁi—l)) + f.

u(z) =

Then, substituting 7 = Kx — cg into the exponential function solutions (
following exact solutions for Eq (3.1):

3

A(Kx—c%)

—e Ko 4 &
3

AKx—c) .
m) + smh(

u(x,t) =

b

u(x, 1) =

AKx—c)
KZ(2y-1)

- cosh( ) + &
Case 3.3.3
Substituting (3.44) with (3.46) and a = K2(2

to zero. Therefore, we obtain the following solutlon

&y

yAz
_eK2(772) + é‘:

u(z) =

Solution (3.57) can be converted to the following form:

&y
sinh(

u(z) =

yAzZ
K2(y-2)

)+E

— cosh(=x 20 2))

Then, substituting 7 = Kx — cg into the exponential function solutions (
following exact solutions for Eq (3.1):

&y

YAKx-cL)
K2(y-2)

u(x,t) =

+&

—€

&y
— sinh(

u(x,t) =

r
yAKx—cZ)
K2(y-2)

1@
YAUKx—c)
K2(-2)

)

— cosh(

Electronic Research Archive

)+E

(3.52)

1nto Eq (3.3), the left hand side of Eq (3.3) reduces

(3.53)

(3.54)

3.53) and (3.54), we get the

(3.55)

(3.56)

1nto Eq (3.3), the left hand side of Eq (3.3) reduces

(3.57)

(3.58)

3.57) and (3.58), we get the

(3.59)

(3.60)
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Case 3.3.4
Substituting (3.44) with (3.46) and @ = — 7" (2
to zero. Therefore, we obtain the following solutlon

1nto Eq (3.3), the left hand side of Eq (3.3) reduces

K’Jé 2)
uz) = - 3.61)

e K2<y 2) _g

Solution (3.61) can be converted to the following form:

V(COSh(m(y 2)) Smh(my 2)))
COSh(KZ( 2)) Smh(m(y 2)) 3

Then, substituting 7 = Kx — cg into the exponential function solutions (3.61) and (3.62), we get the
following exact solutions for Eq (3.1):

u(z) =

(3.62)

yA(Kx—r%)
)
u(x, 1) = re e ) (3.63)
e K202 — £
yA(Kx—c) . [ yAKx—c)
0% (cosh( 02 ) - smh( 203 ))
u(x,t) = pyPam pyPa . (3.64)
Y. X—L‘U . Y X_CE
cosh( o) ) - smh( o) ) -¢&
Case 3.3.5
Substituting (3.44) with (3.46) and @ = 1?2(37_:1)) into Eq (3.3), the left hand side of Eq (3.3) reduces
to 4 (y — 2) (2y — 1) A%. Therefore, we obtain the following solution:
12 1)z
(—2y + D erPon — &( 2)
ug) = S e —ebre (3.65)
—3 ekt + 3¢
provided that 2 (K £ /1) (y=2)2Q2y—1)=0
Solution (3.65) can be converted to the following form:
(—2y + 1) (cosh( %) + sinh(£2)) — £ (y — 2)
o G2 Do) + () - - e

-3 cosh( Ay I)Z) 3si nh( A= 1)1) + 3¢

K2(y+1) K2(y+1)

Then, substituting 7 = Kx — cg into the exponential function solutions (3.65) and (3.66), we get the
following exact solutions for Eq (3.1):

,l(y—l);l(x—r%)
_(2y+1De ®on o —E(y-12)
u(x,t) = p— , (3.67)

—3e Rom 43¢
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(=2 + 1) cosh{ “25 2 ) + sinh( 22 )) - £y - 2)

(1) = K2(y+1) K2(y+1) (3.68)
wx. 1) = 3 cosh Ay—1)(Kx—c'2) 3 sinh Ay—1)(Kx—c'2) 3 :
=3 cosh| === | = 3sinh| =z ) + 3
Case 3.3.6
Substituting (3.44) with (3.46) and @ = — =5 into Eq (3.3), the left hand side of Eq (3.3) reduces
to 4 (y — 2) (2y — 1) 22 = 0. Therefore, we obtain the following solution:
Aly=Dz
—2)e Korh +EQ2y -1
u(z) = (y—2)e o &2y )’ (3.69)
—3e Ko+ + 3¢
provided that (y — 2) 2y — 1) 2> = 0.
Solution (3.69) can be converted to the following form:
(y = 2) (cosh(2222) — ginh(4212)) 4 £ 2y - 1)
o =2 eon(2) - (i) o

—3 cosh(2+12) + 3 sinh(42% ) + 3¢

K2(1+y) K2(1+y)

Then, substituting z = Kx — c’g into the exponential function solutions (3.69) and (3.70), we get the

following exact solutions for Eq (3.1):

Ay=D(Kx-c L)

(y—2)e #on +£Q2y-1)

u(x, ) = P (3.71)
“3e Ko 43¢
Ay=D(Kx—cL) [ A=D(Kx—cL)
(’}/ - 2) (COSh(yKZ(T) - Sll’lh(sz(T)) + 5(2’}/ - 1)
u(x, 1) = — —— (3.72)
v— x—co . y— x—co
-3 COSh(W) +3 Slnh(w) + 3§:
Case 3.4
Substituting
@ V2 e™K +3K2\/§a+2K\/By+2K\/B+ V22 373
u(z) = — )
VB (e - &) 6K \B
into Eq (3.3), we have
2 2
- =0. (3.74)
2VB (e* -6 K
It follows that K 1 2
Ko+ A
= . 3.75
P 2K2(y* =y +1) G-7%)
Substituting (3.73) with (3.75) into Eq (3.3), Eq (3.3) reduces to an algebraic equation:
3
(- sno-D(Ka+ K EEE -3y ) (Ra-Y(Kard)

9 31{41%# (Y2-y+1)K?
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By solving Eq (3.76), we have

Pl yad +/l(y—1)
K2(27—1)’_K2(7 2) TK*(y+ 1)

a= (3.77)
Case 3.4.1
Substituting (3.73) with (3.75) and a = K2(2 1nt0 Eq (3.3), the left hand side of Eq (3.3) reduces
to zero. Therefore, we obtain the following solutlon

2y + 1) e +2¢£(1
u(z) = (=2y + Der@-n +2&( +7) (3.78)
_3 R 4 3¢

Solution (3.78) can be converted to the following form:

"o = (2y+1) (cosh(Kz(z —) + sinh( gz ) + 26 (1 + 7). 379)

-3 cosh( K2(2 ) 3 s1nh( K2(2y 1)) + 3¢

Then, substituting z = Kx — c _ into the exponential function solutions (3.78) and (3.79), we get the
following exact solutions for Eq (3 1):

/{(Kxc )
(-2 +1)ek2m—n> +2%(1+y)
u(x,f) = —=Y — ¢ +y (3.80)
3eFan 43¢

AKx—c)

(27+1)(cosh( - 1)))+s1nh( o ))+2§(1+y)

-3 cosh(d( xcy )) 3 sin h(—A(Kx - ))+3§

K2(2y- K2(2

u(x, 1) = (3.81)

Case 3.4.2
Substituting (3.73) with (3.75) and @ = K2(2
to zero. Therefore, we obtain the following solutlon

1nto Eq (3.3), the left hand side of Eq (3.3) reduces

2e Ty — 2§7+26 Py 23

u(z) = (3.82)
3e o — 3¢
Solution (3.82) can be converted to the following form:
(2y +2) sinh( 1>) +(=2y-2) cosh(Kz(Zy )+ 26y -
u(z) = (3.83)
3 smh( 1<2(2 ) 3 cosh( K2(2y 1)) + 3¢

Then, substituting 7 = Kx — cg into the exponential function solutions (3.82) and (3.83), we get the
following exact solutions for Eq (3.1):

AMKx—c L ) AKx—cL )
2e Farn y — 2§y+26 Wern e

AKx—cg )

3o Rerh — 3¢

u(x, 1) =

(3.84)
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2y +2)sinh(182) & (2y - 2) cosh( S50 + 26y - ¢

3 sinh(M) 3cos h(w) + 3¢

K2(2 K2Q2y-1)

u(x,t) =

(3.85)

Case 3.4.3
Substituting (3.73) with (3.75) and a = K2(2 1nto Eq (3.3), the left hand side of Eq (3.3) reduces
to zero. Therefore, we obtain the following solutlon

u(z) = S z)ek% »oer=2) (3.86)

-3 eKZW 2+ 3¢

provided that 2 (K JE+ 4) Qy—1) 21 +7) =0
Solution (3.86) can be converted to the following form:

(=2~ 2)(cosh(gag;) + sinh(55)) - £ (v — 2)
-3 cosh( rde ) -3 sinh( yde ) + 3¢ '

K2(y-2) K2(y-2)

Then, substituting 7 = Kx — cg into the exponential function solutions (3.86) and (3.87), we get the
following exact solutions for Eq (3.1):

yAK. x—c )

2y —2)e Koo — 2
u(x 1) = (—2y - )ewm ) E(y - ) (3.88)
—3e K0 43¢

yA(Kx—cL)

(-2y -2) (cosh(ﬂliz( > )) + smh( o )) -&(y=2)

u(x, f) = Py pYe (3.89)
-3 cosh( ) - 3 sinh( ) + 3¢
Case 3.4.4
Substituting (3.73) with (3.75) and @ = — Iﬁ;g;jf) into Eq (3.3), the left hand side of Eq (3.3) reduces
to zero. Therefore, we obtain the following solution:
2)e K2<72> +2&(1 +
u(z) = (y=2) &( 7) (3.90)

3¢ TFo 43¢

provided that 22 2y — 1) (K £ /1) (1+7)=

Solution (3.90) can be converted to the following form:

o = (y-2) (cosh(Kz(y 2)) — sinh( 25 )) + 2¢ (1 + o
-3 cosh( ) +3 smh(Kz( 2)) + 3¢

K2(y-2)
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Then, substituting z = Kx — c’(i: into the exponential function solutions (3.90) and (3.91), we get the
following exact solutions for Eq (3.1):

yAKx—c')
u(x. 1) = (y—2)e #o2 +2&(1+7y) (3.92)
’ - y/l(Kxfc%) ’ ’
-3e K02 43¢
A(Kx—c . A(Kx—cZ
(y—-2) (cosh(7 e )) - smh(7 Lias ))) +2£(1+7)
u(x, ) = T - (3.93)
~3 cosh( ) + 3 sinh( ) + 3¢
Case 3.4.5
Substituting (3.73) with (3.75) and @ = &= into Eq (3.3), the left hand side of Eq (3.3) reduces
to zero. Therefore, we obtain the following solution:
A=z
— e K2(1+y)
u(z) = gy —emim A(:f)z , (3.94)
_eK2(1+y) + f
provided that 2 (2y — 1) 22 (K £ _ /l) (y—2)=0.
Solution (3.94) can be converted to the following form:
Aly=Dz : Aly=Dz
u(z) = &y - COSh(Kz(m)) - Smh(KZ(lw)) (3.95)
YT h(22) - inh(“’“’z)jug' '
COSM 2217,y ) — S =21

Then, substituting z = Kx — c% into the exponential function solutions (3.94) and (3.95), we get the
following exact solutions for Eq (3.1):

Ay-D(Kx—cL)
é-‘y —e K2+
Ay-D(Kx—c13)
—e K2(1+7) + é—‘

u(x, 1) =

) (3.96)

Ay-DEKx=c)\ . Ay=D(Kx—c)

ulx 1) = Ay-D(Kx—cS) Ay=1)(Kx—c') ' (3.97)
Y- xX—c'o . y— xX—c'o
- COSh(W) - Slnh(w) + f
Case 3.4.6
Substituting (3.73) with (3.75) and @ = — 2= into Eq (3.3), the left hand side of Eq (3.3) reduces
to zero. Therefore, we obtain the following solution:
_ /1(27—1)z
e KXy —
ue) = Y=k (3.98)
e KX+ — £

provided that 2.2 2y — 1) (K £ _ /l) (y=2)=0.
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Solution (3.98) can be converted to the following form:
Ay-1) . Ay=1)
(cosh(r35) — sinh(r)) v — ¢

cosh( ) ) - sinh( Ay L)z ) - &

K2(1+y) K2(1+y)

u(z) =

(3.99)

Then, substituting z = Kx — c%’ into the exponential function solutions (3.98) and (3.99), we get the
following exact solutions for Eq (3.1):

_ A(y—l)(l(x—c%)

e K2(1+y) v - f
9

u(n, 1) = (3.100)
e Kam ¢
Ay=1(Kx—cL) . [ A=D(Kx—c)
(cosh(—Kz( =) ) - s1nh(—Kz( ) )) v—=&
u(x, 1) = (3.101)

Aly=D(Kx—c) . Ay=D(Kx—c)
cosh(—Kz(Hy) ) - Smh(—mmy) ) -¢

4. Discussion

4.1. New solutions

The traveling wave solutions (3.12), (3.13), (3.21), (3.22), (3.25), (3.36), (3.43), (3.51), (3.52),
(3.55), (3.56), (3.59), (3.60) (3.63), (3.64), (3.67), (3.68), (3.71), (3.72), (3.80), (3.81), (3.84), (3.85),
(3.88), (3.89), (3.92), (3.93), (3.96), (3.97), (3.100), (3.101) appear to be new, comparing the results
in [22] and other open literature.

4.2. New form of exponential solutions

We find a new shape of exponential function solution for Eq (2.12) in the shape of (3.28), where
A(z) is an undetermined function, which is not of the shape of (2.15). This has resulted in an important
extension to the complex method to build new exponential function solutions for PDEs, since the new
shape of the exponential function solution cannot be degenerated by the elliptic function solution.

5. Conclusions

By traveling wave transformation, the conformable Huxley equation is reduced to an ordinary
differential equation. Then, by using the complex method and the extended form of exponential
solutions u(z) = ef:ff) + const, where A(z) is an undetermined function, we can build some new exact
exponential solutions and hyperbolic solutions. Therefore, by using the complex method and the
extended form of exponential solutions, more exact solutions can be built for partial differential

equations.

Acknowledgments

The authors are thankful to the referees for their invaluable comments and suggestions, which put
the article in its present shape.

Electronic Research Archive Volume 31, Issue 3, 1303-1322.



1321

Contflict of interest

The authors declare there are no conflicts of interest.

References

1. C. Rogers, W. F. Shadwick, Bdcklund Transformations and Their Applications, Academic Press,
New York, 1982.

2. M. A. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering,
Cambridge University Press, 1991. https://doi.org/10.1017/CB0O9780511623998

3. C. Rogers, W. K. Schief, Bdcklund and Darboux Transformations: Geometry
and Modern Applications in Soliton Theory, Cambridge University Press, 2002.
https://doi.org/10.1017/CB0O9780511606359

4. S. T. R. Rizvi, M. Younis, D. Baleanu, H. Igbal, Lump and rogue wave solutions
for the Broer-Kaup-Kupershmidt system, Chin. J. Phys., 68 (2020), 19-27.
https://doi.org/10.1016/j.cjph.2020.09.004

5. W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60 (1992), 650—
654. https://doi.org/10.1119/1.17120

6. S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and
Hall/CRC Press, New York, 2004. https://doi.org/10.1201/9780203491164

7. V. E. Tarasov, No nonlocality. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul.,
62 (2018), 157-163. https://doi.org/10.1016/j.cnsns.2018.02.019

8. A. A. Abdelhakim, J. A. T. Machado, A critical analysis of the conformable derivative, Nonlinear
Dyn., 95 (2019), 3063—-3073. https://doi.org/10.1007/s11071-018-04741-5

9. A. A. Hyder, A. H. Soliman, A new generalized #-conformable calculus and its applications in
mathematical physics, Phys. Scr., 96 (2021), 015208. https://doi.org/10.1088/1402-4896/abc6d9

10. A. A. Hyder, A. H. Soliman, Analytical manner for abundant stochastic wave solutions of extended
KdV equation with conformable differential operators, Math. Methods Appl. Sci., 45 (2022), 8600—
8612. https://doi.org/10.1002/mma.7317

11. A. A. Hyder, M. A. Barakat, A. H. Soliman, A. A. Almoneef, C. Cesarano, New analytical
solutions for coupled stochastic Korteweg-de Vries equations via generalized derivatives,
Symmetry, 14 (2022), 1770. https://doi.org/10.3390/sym14091770

12. A. A. Hyder, A. H. Soliman, C. Cesarano, M. A. Barakat, Solving the Schrodinger-Hirota
equation in a stochastic environment and utilizing generalized derivatives of the conformable type,
Mathematics, 9 (2021), 2760. https://doi.org/10.3390/math9212760

13. W. J. Yuan, Y. H. Wu, Q. H. Chen, Y. Huang, All meromorphic solutions for two forms of odd
order algebraic differential equations and its applications, Appl. Math. Comput., 240 (2014), 240-
251. https://doi.org/10.1016/j.amc.2014.04.099

14. W. J. Yuan, Y. Z. Li, J. M. Lin, Meromorphic solutions of an auxiliary ordinary
differential equation using complex method, Math. Meth. Appl. Sci., 36 (2013), 1776-1782.
https://doi.org/10.1002/mma.2723

Electronic Research Archive Volume 31, Issue 3, 1303-1322.


http://dx.doi.org/https://doi.org/10.1017/CBO9780511623998
http://dx.doi.org/https://doi.org/10.1017/CBO9780511606359
http://dx.doi.org/https://doi.org/10.1016/j.cjph.2020.09.004
http://dx.doi.org/https://doi.org/10.1119/1.17120
http://dx.doi.org/https://doi.org/10.1201/9780203491164
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2018.02.019
http://dx.doi.org/https://doi.org/10.1007/s11071-018-04741-5
http://dx.doi.org/https://doi.org/10.1088/1402-4896/abc6d9
http://dx.doi.org/https://doi.org/10.1002/mma.7317
http://dx.doi.org/https://doi.org/10.3390/sym14091770
http://dx.doi.org/https://doi.org/10.3390/math9212760
http://dx.doi.org/https://doi.org/10.1016/j.amc.2014.04.099
http://dx.doi.org/https://doi.org/10.1002/mma.2723

1322

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

W. J. Yuan, Y. D. Shang, Y. Huang, H. Wang, The representation of meromorphic solutions of
certain ordinary differential equations and its applications, Sci. Sin. Math., 43 (2013), 563-575.
https://doi.org/10.1360/012012-159

G. Dang, Meromorphic solutions of the seventh-order KdV equation by using an
extended complex method and Painlevé analysis, ScienceAsia, 49 (2023), 108-115.
https://doi.org/10.2306/scienceasial 513-1874.2022.133

G. Dang, New exact solutions of the sixth-order thin-film equation with complex method, Partial
Differ. Equations Appl. Math., 4 (2021), 100116. https://doi.org/10.1016/j.padiff.2021.100116

G. Dang, Meromorphic solutions of the (2+1)- and the (3+1)- dimensional BLMP equations
and the (2+1)- dimensional KMN equation, Demonstr. Math., 54 (2021), 129-139.
https://doi.org/10.1515/dema-2021-0009

G. L. Dolgikh, D. P. Kovalev, P. D. Kovalev, Excitation of under-ice seiches of a sea port of the sea
of Okhotsk, Dokl. Earth Sci., 486 (2019), 651-653. https://doi.org/10.1134/S1028334X19060011

W. X. Ma, Complexiton solutions to the Korteweg-de Vries equation, Phys. Lett. A, 301 (2002),
35—44. https://doi.org/10.1016/S0375-9601(02)00971-4

I. Kovacic, M. J. Brennan, The Duffing Equation: Nonlinear Oscillators and their behavior, John
Wiley and Sons, London, 2011. http://dx.doi.org/10.1002/9780470977859

A. C. Cevikel, A. Bekir, E. H. M. Zahran, Novel exact and solitary solutions of
conformable Huxley equation with three effective methods, J. Ocean Eng. Sci., 2022 (2022).
https://doi.org/10.1016/j.joes.2022.06.010

R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J.
Comput. Appl. Math., 264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002

S. Lang, Elliptic Functions, 2"¢ edition, Springer Verlag, New York, 1987.
https://doi.org/10.1007/978-1-4612-4752-4

A. Eremenko, Meromorphic traveling wave solutions of the Kuramoto-Sivashinsky equation,
arXiv preprint, (2006), arXiv:nlin/0504053. https://doi.org/10.48550/arXiv.nlin/0504053

W. J. Yuan, Z. F. Huang, M. Z. Fu, J. C. Lai, The general solutions of an auxiliary ordinary
differential equation using complex method and its applications, Adv. Differ. Equations, 2014
(2014). https://doi.org/10.1186/1687-1847-2014-147

R. Conte, T. W. Ng, C. F Wu, Hayman’s classical conjecture on some nonlinear

second-order algebraic ODEs, Complex Var. Elliptic Equations, 60 (2015), 1539-1552.
https://doi.org/10.1080/17476933.2015.1033414

©2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the

% AIMS Press

@ terms of the Creative Commons Attribution License

Elec

(http://creativecommons.org/licenses/by/4.0)

tronic Research Archive Volume 31, Issue 3, 1303-1322.


http://dx.doi.org/https://doi.org/10.1360/012012-159
http://dx.doi.org/https://doi.org/10.2306/scienceasia1513-1874.2022.133
http://dx.doi.org/https://doi.org/10.1016/j.padiff.2021.100116
http://dx.doi.org/https://doi.org/10.1515/dema-2021-0009
http://dx.doi.org/https://doi.org/10.1134/S1028334X19060011
http://dx.doi.org/https://doi.org/10.1016/S0375-9601(02)00971-4
http://dx.doi.org/http://dx.doi.org/10.1002/9780470977859
http://dx.doi.org/https://doi.org/10.1016/j.joes.2022.06.010
http://dx.doi.org/https://doi.org/10.1016/j.cam.2014.01.002
http://dx.doi.org/https://doi.org/10.1007/978-1-4612-4752-4
http://dx.doi.org/https://doi.org/10.48550/arXiv.nlin/0504053
http://dx.doi.org/https://doi.org/10.1186/1687-1847-2014-147
http://dx.doi.org/https://doi.org/10.1080/17476933.2015.1033414
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Proof
	Discussion
	New solutions
	New form of exponential solutions 

	Conclusions

