Research article

Pullback dynamics and robustness for the 3D Navier-Stokes-Voigt equations with memory

  • Received: 19 September 2022 Revised: 20 November 2022 Accepted: 24 November 2022 Published: 05 December 2022
  • The tempered pullback dynamics and robustness of the 3D Navier-Stokes-Voigt equations with memory and perturbed external force are considered in this paper. Based on the global well-posedness results and energy estimates involving memory, a suitable tempered universe is constructed, the robustness is finally established via the upper semi-continuity of tempered pullback attractors when the perturbation parameter epsilon tends to zero.

    Citation: Keqin Su, Rong Yang. Pullback dynamics and robustness for the 3D Navier-Stokes-Voigt equations with memory[J]. Electronic Research Archive, 2023, 31(2): 928-946. doi: 10.3934/era.2023046

    Related Papers:

  • The tempered pullback dynamics and robustness of the 3D Navier-Stokes-Voigt equations with memory and perturbed external force are considered in this paper. Based on the global well-posedness results and energy estimates involving memory, a suitable tempered universe is constructed, the robustness is finally established via the upper semi-continuity of tempered pullback attractors when the perturbation parameter epsilon tends to zero.



    加载中


    [1] A. N. Carvalho, J. A. Langa, J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York, 2013.
    [2] V. V. Chepyzhov, M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Rhode Island, 2002.
    [3] C. Foias, O. Manley, R. Rosa, R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001.
    [4] T. Nazir, M. Khumalo, V. Makhoshi, Iterated function system of generalized contractions in partial metric spaces, Filomat, 35 (2021), 5161–5180. https://doi.org/10.2298/FIL2115161N doi: 10.2298/FIL2115161N
    [5] M. A. Ragusa, F. Wu, Global regularity and stability of solutions to the 3D-double diffusive convection system with Navier boundary conditions, Adv. Differ. Equations, 26 (2021), 281–304.
    [6] N. A. Shah, M. Areshi, J. D. Chung, K. Nonlaopon, The new semianalytical technique for the solution of fractional-order Navier-Stokes equation, J. Funct. Spaces, 2021 (2021), 5588601. https://doi.org/10.1155/2021/5588601 doi: 10.1155/2021/5588601
    [7] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1997.
    [8] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, American Mathematical Society, Rhode Island, 1984.
    [9] J. Wang, C. Zhao, T. Caraballo, Invariant measures for the 3D globally modified Navier-Stokes equations with unbounded variable delays, Comm. Nonlinear Sci. Numer. Simul., 91 (2020), 105459. https://doi.org/10.1016/j.cnsns.2020.105459 doi: 10.1016/j.cnsns.2020.105459
    [10] C. Zhao, L. Yang, Pullback attractors and invariant measures for the non-autonomous globally modified Navier-Stokes equations, Commun. Math. Sci., 15 (2017), 1565–1580. http://dx.doi.org/10.4310/CMS.2017.v15.n6.a4 doi: 10.4310/CMS.2017.v15.n6.a4
    [11] V. K. Kalantarov, E. S. Titi, Global attractors and determining modes for the 3D Navier-Stokes-Voight equations, Chin. Ann. Math. Ser. B., 30 (2009), 697–714. https://doi.org/10.1007/s11401-009-0205-3 doi: 10.1007/s11401-009-0205-3
    [12] J. García-Luengo, P. Marín-Rubio, J. Real, Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voight equations, Nonlinearity, 95 (2012), 905–930. https://doi.org/10.1088/0951-7715/25/4/905 doi: 10.1088/0951-7715/25/4/905
    [13] Y. Qin, K. Su, Upper estimates on Hausdorff and fractal dimensions of global attractors for the 2D Navier-Stokes-Voight equations with a distributed delay, Asymptotic Anal., 111 (2019), 179–199. https://doi.org/10.3233/ASY-181492 doi: 10.3233/ASY-181492
    [14] M. C. Zelati, C. G. Gal, Singular limits of voigt models in fluid dynamics, J. Math. Fluid Mech., 17 (2015), 233–259. https://doi.org/10.1007/s00021-015-0201-1 doi: 10.1007/s00021-015-0201-1
    [15] M. Conti, V. Danese, C. Giorgi, V. Pata, A model of viscoelasticity with time-dependent memory kernels, Am. J. Math., 140 (2018), 349–389. https://doi.org/10.1353/ajm.2018.0008 doi: 10.1353/ajm.2018.0008
    [16] S. Gatti, C. Giorgi, V. Pata, Navier-Stokes limit of Jeffreys type flows, Phys. D., 203 (2005), 55–79. https://doi.org/10.1016/j.physd.2005.03.007 doi: 10.1016/j.physd.2005.03.007
    [17] C. G. Gal, T. T. Mejio, A Navier-Stokes-Voight model with memory, Math. Method Appl. Sci., 36 (2013), 2507–2523. https://doi.org/10.1002/mma.2771 doi: 10.1002/mma.2771
    [18] F. D. Plinio, A. Giorgini, V. Pata, R. Temam, Navier-Stokes-Voight equations with memory in 3d lacking instantaneous kinematic viscosity, J. Nonlinear Sci., 28 (2018), 653–686. https://doi.org/10.1007/s00332-017-9422-1 doi: 10.1007/s00332-017-9422-1
    [19] T. Caraballo, J. A. Langa, On the upper semi-continuity of cocycle attractors for non-autonomous and random dynamical systems, Dyn. Contin., Discrete Impulsive Syst. Ser. A, 10 (2003), 491–513.
    [20] T. Caraballo, J. A. Langa, J. C. Robinson, Upper semi-continuity of attractors for small random perturbations of dynamical systems, Comm. Partial Differ. Equations, 23 (1998), 1557–1581. https://doi.org/10.1080/03605309808821394 doi: 10.1080/03605309808821394
    [21] Y. Wang, Y. Qin, Upper semicontinuity of pullback attractors for nonclassical diffusion equations, J. Math. Phys., 51 (2010), 1–12. https://doi.org/10.1063/1.3277152 doi: 10.1063/1.3277152
    [22] Z. Yang, Y. Li, Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations, Discrete Contin. Dyn. Syst.-Ser. B, 24 (2019), 4899–4912. https://doi.org/10.3934/dcdsb.2019036 doi: 10.3934/dcdsb.2019036
    [23] V. Pata, Uniform estimates of Gronwall type, J. Math. Anal. Appl., 373 (2011), 264–270. https://doi.org/10.1016/j.jmaa.2010.07.006 doi: 10.1016/j.jmaa.2010.07.006
    [24] J. García-Luengo, P. Marín-Rubio, G. Planas, Attractors for a double time-delayed 2D-Navier-Stokes model Discrete Contin. Dyn. Syst., 34 (2014), 4085–4105. https://doi.org/10.3934/dcds.2014.34.4085 doi: 10.3934/dcds.2014.34.4085
    [25] G. R. Sell, Y. You, Dynamics of Evolutionary Equations, Springer, New York, 2002.
    [26] C. Sun, M. Yang, Dynamics of the nonclassical diffusion equations, Asymptotic Anal., 59 (2008), 51–81. https://doi.org/10.3233/ASY-2008-0886 doi: 10.3233/ASY-2008-0886
    [27] P. Marín-Rubio, J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators, Discrete Contin. Dyn. Syst., 26 (2010), 989–1006. https://doi.org/10.3934/dcds.2010.26.989 doi: 10.3934/dcds.2010.26.989
    [28] J. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Rhode Island, 1988.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1158) PDF downloads(73) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog