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Abstract: The tempered pullback dynamics and robustness of the 3D Navier-Stokes-Voigt equations
with memory and perturbed external force are considered in this paper. Based on the global well-
posedness results and energy estimates involving memory, a suitable tempered universe is constructed,
the robustness is finally established via the upper semi-continuity of tempered pullback attractors when
the perturbation parameter epsilon tends to zero.
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1. Introduction

The Navier-Stokes equations are a typical nonlinear system, which model the mechanics law for
fluid flow and have been applied in many fields. There are many research findings on the Navier-Stokes
system, involving well-posedness, long-time behavior, etc., [1–10]. Furthermore, to simulate the fluid
movement modeled by the Navier-Stokes equations, some regularized systems are proposed, such as
the Navier-Stokes-Voigt equations. The Navier-Stokes-Voigt equations were introduced by Oskolkov
in 1973, which describe the motion of Kelvin-Voigt viscoelastic incompressible fluid. Based on the
global well-posedness of 3D Navier-Stokes-Voigt equations in [11], many interesting results on long-
time behavior of solutions have been obtained, such as the existence of global attractor and pullback
attractors, determining modes and estimate on fractal dimension of attractor [12–14] and references
therein for details.

The influence of past history term on dynamical system is well known, we refer to [15–18] for
interesting conclusions, such as the global well-posedness, the existence of attractors and so on. In
2013, Gal and Tachim-Medjo [17] studied the Navier-Stokes-Voigt system with instantaneous viscous
term and memory-type viscous term, and obtained the well-posedness of solution and exponential
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attractors of finite dimension. In 2018, Plinio et al. [18] considered the Navier-Stokes-Voigt system
in [18], in which the instantaneous viscous term was completely replaced by the memory-type viscous
term and the Ekman damping βu was presented. The authors showed the existence of regular global
and exponential attractors with finite dimension. The presence of Ekman damping was to eliminate the
difficulties brought by the memory term in deriving the dissipation of system.

Some convergence results of solutions or attractors as perturbation vanishes for the non-autonomous
dynamical systems without memory can be seen in [19–22]. However, there are few convergence
results on the system with memory. Therefore, our purpose is to study the tempered pullback dynamics
and robustness of the following 3D incompressible Navier-Stokes-Voigt equations on the bounded
domain Ω with memory and the Ekman damping:



∂
∂t (u − α∆u) −

∫ ∞
0

g(s)∆u(t − s)ds + (u · ∇)u + βu + ∇p = fε(t, x), (t, x) ∈ Ωτ,
divu = 0, (t, x) ∈ Ωτ,
u(t, x) = 0, (t, x) ∈ ∂Ωτ,
u(τ, x) = u(τ), x ∈ Ω,
u(τ − s, x) = φ(s, x), (s, x) ∈ Ω0,

(1.1)

where Ωτ = (τ,+∞) × Ω, ∂Ωτ = (τ,+∞) × ∂Ω, Ω0 = (0,∞) × Ω, τ ∈ R+ is the initial time, α > 0 is
a length scale parameter characterizing the elasticity of fluid, β > 0 is the Ekman dissipation constant,
u = (u1(t, x), u2(t, x), u3(t, x)) is the unknown velocity field of fluid, and p is the unknown pressure. The
non-autonomous external force is fε(t, x) = f1(x) + ε f2(t, x) (0 ≤ ε < ε0), where ε0 is a fixed constant
small enough. In addition, u(τ) is the initial velocity, and φ(s, x) denotes the past history of velocity.
The memory kernel g : [0,∞)→ [0,∞) is supposed to be convex, smooth on (0,∞) and satisfies that

g(∞) = 0,
∫ ∞

0
g(s)ds = 1.

In general, we give the past history variable

η = ηt(s) =
∫ s

0
u(t − σ)dσ, s ≥ 0,

which satisfies
∂

∂t
η = −

∂

∂s
η + u(t).

Also, η has the explicit representation ηt(s) =
∫ s

0
u(t − σ)dσ, 0 < s ≤ t,

ηt(s) = η0(s − t) +
∫ t

0
u(t − σ)dσ, s > t,

(1.2)

and
ητ(s) =

∫ s

0
φ(σ)dσ.

Next, we give the main features of this paper as follows.
1) Inspired by [18, 23], we provide a detailed representation and Gronwall type estimates for the

energy of (1.1) dependent on ε in Lemma 2.1, with a focus on the parameters ω, Λ and the increasing
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function J(∗). Using these parameters, we construct the universe D and derive the existence of
D−pullback absorbing sets, see Lemma 4.9.

2) Via the decomposition method, we show that the process of the system has the property of
D− κ−pullback contraction in the space NV , and theD−pullback asymptotic compactness is obtained
naturally. Based on the theory of attractor in [1,24], theD-pullback attractors for the process {S ε(t, τ)}
in NV are derived, see Theorem 3.3.

3) When the perturbation parameter ε→ 0 with the non-autonomous external force, the robustness
is obtained via the upper semi-continuity of pullback attractors of (1.1) by using the technique
in [18, 21, 22], see Theorems 3.2 in Section 3.

This paper is organized as follows. Some preliminaries are given in Section 2, and the main results
are stated in Section 3, which contains the global well-posedness of solution, the existence of pullback
attractors and robustness. Finally, the detailed proofs are provided in Sections 4 and 5.

2. Preliminaries

2.1. Some functional spaces

• The Sobolev spaces
Let E = {u|u ∈ (C∞0 (Ω))3, divu = 0}, H is the closure of E in (L2(Ω))3 topology with the norm and

inner product as

|u| = ∥u∥H = (u, v)1/2, (u, v) =
3∑

j=1

∫
Ω

u j(x)v j(x)dx, ∀ u, v ∈ H.

V is the closure of E in (H1(Ω))3 topology with the norm and inner product as

∥u∥ = ∥u∥V = ((u, u))1/2
V , ((u, v))V =

3∑
i, j=1

∫
Ω

∂u j

∂xi

∂v j

∂xi
dx, ∀ u, v ∈ V.

Also, we denote
((u, v))Vα = (u, v) + α((u, v))V , ||u||2Vα = |u|

2 + α||u||2.

H and V are Hilbert spaces with their dual spaces H and V ′ respectively, ∥ · ∥∗ and ⟨·, ·⟩ denote the
norm in V ′ and the dual product between V and V ′ respectively, and also H to itself.

• The fractional power functional spaces
Let PL be the Helmholz-Leray orthogonal projection in (L2(Ω))3 onto H [3, 7], and

PL : H ⊕ H⊥ → H,

where
H⊥ = {u ∈ (L2(Ω))3; ∃ χ ∈ (L2

loc(Ω))3 : u = ∇χ}.

A = −PL∆ is the Stokes operator with eigenvalues {λ j}
∞
j=1 and orthonormal eigenfunctions {ω j}

∞
j=1.

Define the fractional operator As by

Asu =
∑

j

λs
j(u, ω j)ω j, s ∈ R, j ∈ Z+
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for u =
∑

j

(u, ω j)ω j with the domain D(As) = {u|Asu ∈ H}, and we use the norm of D(As) as

∥u∥22s = |A
su|2 =

∑
j

λ2s
j |(u, ω j)|2.

Especially, denote W = D(A), and V = D(A1/2) with norm ∥u∥1 = |A1/2u| = ∥u∥ for any u ∈ V .

• The memory spaces
For any s ∈ (0,∞), we define µ(s) = −g′(s), which is nonnegative, absolutely continuous,

decreasing (µ′ ≤ 0 almost everywhere) and

κ =

∫ ∞

0
µ(s)ds > 0. (2.1)

Also, there exists δ > 0 such that

µ′(s) + δµ(s) ≤ 0, a.e. s ∈ (0,∞). (2.2)

Let
MX = L2

µ(R
+; X), X = V or W,

which is a Hilbert space on R+ with inner product and norm

((η, ζ))MX =

∫ ∞

0
µ(s)
(
(η(s), ζ(s)

)
Xds, ∥η∥MX =

( ∫ ∞

0
µ(s)||η(s)||2Xds

)1/2
.

Moreover, the extended memory space can be defined as

NX = X × MX

equipped with the norm
∥(u, η)∥2NX

= ∥u∥2X + ∥η∥
2
MX
.

2.2. Some inequalities and conclusions

• The bilinear and trilinear operators
The bilinear and trilinear operators are defined as follows [8]

B(u, v) := PL((u · ∇)v), ∀ u, v ∈ V, (2.3)

b(u, v,w) =< B(u, v),w >=
3∑

i, j=1

∫
Ω

ui
∂v j

∂xi
w jdx. (2.4)

Denote B(u) = B(u, u), B(u, v) is a continuous operator from V × V to V ′, and there hold

b(u, v, v) = 0, b(u, v,w) = −b(u,w, v), ∀ u, v,w ∈ V. (2.5)

Electronic Research Archive Volume 31, Issue 2, 928–946.



932

• Some useful lemmas

Lemma 2.1. ( [23] ) Assume that
1) A nonnegative function h is locally summable on R+, and for any ε ∈ (0, ε0] and any t ≥ τ ≥ 0

there holds

ε

∫ t

τ

e−ε(t−s)h(s)ds ≤
8
5

sup
t≥0

∫ t+1

t
h(s)ds < ∞.

2) The nonnegative function yε(t) is absolutely continuous on [τ,∞), and satisfies for some constants
R,C0 ≥ 0 that

yε(t) ≤ Re−ε(t−τ) + εp
∫ t

τ

e−ε(t−s)h(s)yε(s)qds +
C0

ε1+r ,

where p, q, r ≥ 0, and p − 1 > (q − 1)(1 + r) ≥ 0.
3) Let z(t) ≥ 0 be a continuous function on (0,∞) equivalent to yε(t), which means there exist some

constants M ≥ 1, L ≥ 0 such that

z(t) ≤ Myε(t) ≤ M(z(t) + L).

Then, there exist ω, Λ > 0 and an increasing function J(∗) : R+ → R+ such that

z(t) ≤ J(MR)e−ω(t−τ) + Λ(MC0 + L).

Remark 2.1. Under the assumptions in Lemma 2.1, there exists a constant θ ∈ (0, 1) satisfying

p1 = pθ − θ + 1 − q > 0, p2 = 1 − θ − rθ > 0.

Denote

p3 = max{ε−1/θ
0 , (2 sup

t≥0

∫ t+1

t
h(s)ds)1/p1 ,C1/p2

0 }, p4 = 2max{6Rp−1
3 , 1},

then

ω = ωθ,p,q,r,C0 =
1
2

p−θ3 , Λ = Λθ,p,q,r,C0 = 5p1−p2
3 ,

J(R) = Jθ,p,q,r,C0(R) = 2pq
4 p3exp(

pθ4
1 − 2−θ

ln(6pq
4)).

Lemma 2.2. ( [15] ) Let η be the past history variable and (1.2) holds. Then

∥ηt(s)∥2MX
− ∥ητ(s)∥2MX

≤ 2
∫ t

τ

((ησ, u(σ)))MX dσ.

3. Main results

3.1. Some assumptions

We assume that f1(x) and f2(t, x) satisfy the following hypotheses:
(C1) The function f1 ∈ H.
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(C2) f2(t, x) is translation bounded in L2
loc(R,H), which means there exists a constant K > 0 such

that

sup
t∈R

∫ t+1

t
| f2(s)|2ds < K,

and for any t ∈ R, there also holds∫ t

−∞

eιs∥ f2(s)∥2ds < ∞, 0 < ι ≤ νε0, ν = min{
ακδ

72
, 1}, (3.1)

where κ, δ are the same as parameters in (2.1) and (2.2) respectively.

3.2. Equivalent problem

Construct the infinitesimal generator of right-translation semigroup on MX

Tη = −
∂

∂s
η,

whose domain is
D(T ) = {η ∈ MX :

∂

∂s
η ∈ MX, η(0) = 0}.

Given initial datum U(τ) = (u(τ), ητ) ∈ NV , then (1.1) can be transformed into the following
abstract form

∂
∂t (u + αAu) +

∫ ∞
0
µ(s)Aη(s)ds + B(u, u) + βu = PL fε(t, x), (t, x) ∈ Ωτ,

∂
∂tη = Tη + u,
divu = 0, (t, x) ∈ Ωτ,
u(t, x) = 0, (t, x) ∈ ∂Ωτ,
u(τ, x) = u(τ), x ∈ Ω,
ητ(s) =

∫ s

0
φ(σ)dσ.

(3.2)

3.3. Main results for the system (3.2)

• Global well-posedness of solution

Definition 3.1. A function U(t) = (u(t), ηt) : [τ,+∞) → NV is called the weak solution to (3.2), if for
any fixed T > τ there hold

(i) U(t) ∈ C([τ,T ]; NV), ∂u
∂t ∈ L2(τ,T ; V).

(ii) U(τ) = (u(τ), ητ).
(iii) for any w ∈ C1([τ,T ]; V) with w(T, x) = 0, there holds

−

∫ T

τ

⟨u + αAu,wt⟩dt +
∫ T

τ

∫ ∞

0
µ(s)((η(s),w))Vdsdt +

∫ T

τ

b(u, u,w)dt +
∫ T

τ

(βu,w)dt

= ((u(τ),w(τ)))Vα +

∫ T

τ

(PL fε,w)dt. (3.3)

Theorem 3.2. Let U(τ) ∈ NV , and the hypotheses (C1)–(C2) hold. Then the global weak solution
U(t, x) to system (3.2) uniquely exists on (τ,T ), which generates a strongly continuous process

S ε(t, τ) : NV → NV , ∀ t ≥ τ, 0 ≤ ε < ε0

and S ε(t, τ)U(τ) = U(t).
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Proof. The global well-posedness of solution can be obtained by the Galerkin approximation method,
energy estimates and compact scheme. The detailed proof can be found in [15,18] and is omitted here.

• Existence ofD-pullback attractors

Theorem 3.3. Assume U(τ) ∈ NV and the hypotheses (C1)–(C2) hold. Then the process S ε(t, τ) :
NV → NV generated by the system (3.2) possesses a minimal family of D-pullback attractors Aε =
{Aε(t)}t∈R in NV .

Proof. See Section 4.2.

When ε = 0, the system (3.2) can be reduced to the following autonomous system

∂
∂t (u + αAu) +

∫ ∞
0
µ(s)Aη(s)ds + B(u, u) + βu = PL f1(x), (t, x) ∈ Ωτ,

∂
∂tη = Tη + u,
divu = 0, (t, x) ∈ Ωτ,
u(t, x) = 0, (t, x) ∈ ∂Ωτ,
u(τ, x) = u(τ), x ∈ Ω,
ητ(s) =

∫ s

0
φ(σ)dσ.

(3.4)

Remark 3.1. The existence of global attractor A0 in NV can be achieved for the semigroup S 0(t − τ)
generated by (3.4).

• Robustness: upper semi-continuity ofD-pullback attractors
Let
∨

be a metric space, and {Aλ}λ∈∨ is a family of subsets in X. Then it is said that {Aλ} has the
property of upper semi-continuity as λ→ λ0 in X if

lim
λ→λ0

distX(Aλ,Aλ0) = 0.

The upper semi-continuity of attractors and related conclusions can be referred to [1, 19, 20, 22] for
more details.

In the following way, we intend to establish some results on the convergence between D-pullback
attractorsAε to system (3.2) and global attractorA0 to system (3.4) as ε→ 0.

Theorem 3.4. Let U(τ) ∈ NV ,Aε is the family ofD-pullback attractors of S ε(t, τ) in NV to system (3.2),
and A0 is the global attractor of S 0(t − τ) in NV to system (3.4). Then the robustness of system is
obtained by the following upper semi-continuity

lim
ε→0

distNV (Aε,A0) = 0.

Proof. See Section 5.
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4. Pullback dynamics

4.1. Theory of dynamics

In this section, we first give the fundamental theory of attractors for dissipative systems, and the
related conclusions can be seen in [1–3, 7].

• Some relevant definitions

Definition 4.1. Assume that P(X) is the family of all nonempty subsets in a metric space X. If D is
some nonempty class of families in the form D̂ = {D(t) : t ∈ R} ⊂ P(X), where D(t) ⊂ X is nonempty
and bounded, thenD is said to be a universe in P(X).

Definition 4.2. The family D̂0 = {D0(t) : t ∈ R} ⊂ P(X) isD-pullback absorbing for the process S (·, ·)
on X if for any t ∈ R and any D̂ ∈ D, there exists a τ0(t, D̂) ≤ t such that

S (t, τ)D(τ) ⊂ D0(t), ∀ τ ≤ τ0(t, D̂).

Definition 4.3. A process S (·, ·) on X is said to beD-pullback asymptotically compact if for any t ∈ R,
any D̂ ∈ D, and any sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X satisfying τn → −∞ and xn ∈ D(τn), the
sequence {S (t, τn)xn} is relatively compact in X.

The D-pullback asymptotic compactness can be characterized by the Kuratowski measure of
noncompactness κ(B) (B ⊂ X), relating definition and properties can be referred to [25, 26], and the
definition ofD− κ-pullback contraction will be given as follows.

Definition 4.4. For any t ∈ R and ε > 0, a process S (t, τ) on X is said to beD−κ-pullback contracting
if there exists a constant TD(t, ε) > 0 such that

κ(S (t, t − τ)D(t − τ)) ≤ ε, ∀ τ ≥ TD(t, ε).

Definition 4.5. A family A(t) = {A(t)}t∈R is called the D-pullback attractors of process S (t, τ), if for
any t ∈ R and any {D(t)} ∈ D, the following properties hold.

(i) A(t) is compact in X.
(ii) S (t, τ)A(τ) = A(t), t ≥ τ.
(iii) lim

τ→−∞
distX(S (t, τ)D(τ), A(t)) = 0.

In addition, D-pullback attractor A is said to be minimal if whenever Ĉ is another D-attracting
family of closed sets, then A(t) ⊂ C(t) for all t ∈ R.

• Some conclusions

Theorem 4.6. ( [1, 27] ) Let S (·, ·) : R2
d × X → X be a continuous process, where R2

d = {(t, τ) ∈
R2| t ≥ τ},D is a universe in P(X), and a family D̂0 = {D0(t) : t ∈ R} ⊂ P(X) isD-pullback absorbing
for S (·, ·), which is D-pullback asymptotically compact. Then, the family of D-pullback attractors
AD = {AD(t) : t ∈ R} exists and

AD(t) =
⋂
s≥0

⋃
τ≥s

S (t, t − τ)D(t − τ)
X

, t ∈ R.
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Remark 4.1. If D̂0 ∈ D, then AD is minimal family of closed subsets attracting pullback to D. It is
said to be unique provided that D̂0 ∈ D, D0(t) is closed for any t ∈ R, andD is inclusion closed.

Theorem 4.7. ( [21] ) Assume that D̃ = {̂̃D(t)} is a family of sets in X, S (·, ·) is continuous, and, for
any t ∈ R, there exists a constant T (t,D, D̃) such that

S (t, t − τ)D(t − τ) ⊂ D̃(t), ∀ τ ≥ T (t,D, D̃).

If S (·, ·) is D-pullback absorbing and D̂ − κ-pullback contracting, then the D-pullback attractors
AD = {AD(t) : t ∈ R} exist for S (·, ·).

Lemma 4.8. ( [28] ) Assume that S (·, ·) = S 1(·, ·) + S 2(·, ·), D̃ = {̂̃D(t)} is a family of subsets in X, and
for any t ∈ R and any τ ∈ R+ there hold

(i) For any u(t − τ) ∈ D̃(t − τ),

∥S 1(t, t − τ)u(t − τ)∥X ≤ Φ(t, τ)→ 0 (τ→ +∞).

(ii) For any T ≥ τ, ∪0≤τ≤T S 2(t, t−τ)D̃(t−τ) is bounded, and S 2(t, t−τ)D̃(t−τ) is relatively compact
in X.
Then S (·, ·) is D̂ − κ-pullback contracting in X.

4.2. Proof of Theorem 3.3

From Theorems 3.2, we know that the system (3.2) generates a continuous process S ε(t, τ) in NV .
To obtain the D-pullback attractors, we need to establish the existence of D-pullback absorbing set
and theD-pullback asymptotic compactness of S ε(t, τ).

• Existence ofD-pullback absorbing set in NV

LetD denote a family of all {D(t)}t∈R ⊂ P(NV) satisfying

lim
τ→−∞

eωτ sup
U(τ)∈D(τ)

J(2|U(τ)|2) = 0,

where ω = ω3/4,1,4,3, fε > 0 and J(·) = J3/4,1,4,3, fε(·). Next, we establish the existence of D-pullback
absorbing set.

Lemma 4.9. Let (u(τ), ητ) ∈ NV , then the process {S ε(t, τ)} to system (3.2) possesses a D-pullback
absorbing set D̂ε0(t) = {Dε0(t)}t∈R in NV , where

Dε0(t) = B̄NV (0, ρεNV
(t)),

with radius

ρεNV
(t) =

√
2
√
Λ3/4,1,4,3, fε(2C(| f1|

2 + εK) + 1). (4.1)
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Proof. Multiplying (3.2) by u, we have

1
2

d
dt
∥u∥2Vα +

∫ ∞

0
µ(s)Aη(s)u(t)ds + β|u|2 = (PL fε, u), (4.2)

that is

1
2

d
dt
∥u∥2Vα +

∫ ∞

0
µ(s)Aη(s)(∂tη(s) + ∂sη(s))ds + β|u|2

=
1
2

d
dt

(∥u∥2Vα + ∥η∥
2
MV

) +
1
2

∫ ∞

0
µ(s)

d
ds
∥η∥2ds + β|u|2 ≤ |( fε, u)|. (4.3)

Multiplying (3.2) by ut, we have

∥ut∥
2
Vα + ((η, ut))MV +

1
2
β

d
dt
|u|2 + b(u, u, ut) = (PL fε, ut). (4.4)

Then, the interpolation inequality and Young inequality lead to

β
d
dt
|u|2 + 2∥ut∥

2
Vα

≤ 2|((η, ut))MV | + 2|( fε, ut)| + 2|b(u, u, ut)|
≤ 2|((η, ut))MV | + 2|( fε, ut)| +C∥u∥L3∥u∥∥u∥L6

≤ 2|((η, ut))MV | + 2|( fε, ut)| +C|u|1/2∥u∥1/2∥u∥∥u∥L6

≤ α∥ut∥
2 +C∥η∥2MV

+C|u|∥u∥3 +C| fε|2. (4.5)

To estimate the term
∫ ∞

0
µ(s) d

ds∥η∥
2ds in (4.3) and avoid the possible singularity of µ at zero, we

refer to [18] and construct the following new function

µ̃(s) =
{
µ(s̃), 0 < s ≤ s̃,

µ(s), s > s̃,

where s̃ is fixed such that
∫ s̃

0
µ(s)ds ≤ κ/2. Also, if we set

Φ(t) =
−4
κ

∫ ∞

0
µ̃(s)((η(s), u(t)))ds,

then differentiating in t leads to

d
dt
Φ(t) + ∥u∥2 ≤

4µ(s̃)
κ2

∫ ∞

0
µ(s)

d
ds
∥η∥2ds +

4
ακε
∥η∥2MV

+ αε∥ut∥
2. (4.6)

We use the technique in [18] and set

yε(t) = E(t) + νεΦ(t) + ε2Ψ(t),

where
E(t) =

1
2

(∥u∥2Vα + ∥η∥
2
MV

), Ψ(t) = 2β|u|2.
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For sufficient small ε, it leads to
E(t) ≤ 2yε(t) ≤ 2(E(t) + 1),

where we choose ε0 satisfying

νε0 sup
t∈[τ,T ]

Φ(t) + ε2
0 sup

t∈[τ,T ]
Ψ(t) = 1,

and 0 ≤ ε < ε0. Then, there holds

d
dt

yε(t) +Cεyε(t) ≤ Cε4yε(t)3 +C| fε|2, (4.7)

and

yε(t) ≤ yε(τ)e−ε(t−τ) +Cε4
∫ t

τ

e−ε(t−s) · 1 · yε(s)3ds +C sup
t∈R

∫ t+1

t
| fε|2ε−1ds

≤ yε(τ)e−ε(t−τ) +Cε4
∫ t

τ

e−ε(t−s) · 1 · yε(s)3ds +C(| f1|
2 + εK)ε−1. (4.8)

Then by Lemma 2.1, there exist

ω = ω3/4,1,4,3, fε > 0, Λ = Λ3/4,1,4,3, fε > 0,

and an increasing function
J(·) = J3/4,1,4,3, fε(·) : R+ → R+

such that
E(t) ≤ J(2E(τ))e−ω(t−τ) + Λ(2C(| f1|

2 + εK) + 1),

which implies the conclusion holds.

Remark 4.2. For the semigroup S 0(t − τ), it has the global absorbing set D0
0 in NV , where

D0
0 = {U ∈ NV ; ∥U∥NV ≤ ρ

0
NV
=
√

2
√
Λ3/4,1,4,3, f1(2C| f1|

2 + 1)} (4.9)

and

lim sup
ε→0

ρεNV
(t) = ρ0

NV
. (4.10)

• D − κ-pullback contraction of S ε(t, τ) in NV

To verify the pullback contraction of S ε(t, τ), we decompose S ε(t, τ) as follows

S ε(t, τ)U(τ) = S ε1(t − τ)U1(τ) + S ε2(t, τ)U2(τ) =: U1(t) + U2(t),

which solve the following two problems respectively

∂
∂t (u1 + αAu1) +

∫ ∞
0
µ(s)Aη1(s)ds + B(u, u1) = 0, (t, x) ∈ Ωτ,

∂
∂tη1 = Tη1 + u1,

divu1 = 0, (t, x) ∈ Ωτ,
u1(t, x) = 0, (t, x) ∈ ∂Ωτ,
u1(τ, x) = u(τ), x ∈ Ω,
ητ1(s) =

∫ s

0
φ(σ)dσ,

(4.11)
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and 

∂
∂t (u2 + αAu2) +

∫ ∞
0
µ(s)Aη2(s)ds + B(u, u2) + βu2 = PL fε − βu1, (t, x) ∈ Ωτ,

∂
∂tη2 = Tη2 + u2,

divu2 = 0, (t, x) ∈ Ωτ,
u2(t, x) = 0, (t, x) ∈ ∂Ωτ,
u2(τ, x) = 0, x ∈ Ω,
ητ2(s) = 0.

(4.12)

Lemma 4.10. Let U(τ) ∈ Dε0(τ), then the solution S ε1(t − τ)U(τ) to the system (4.11) satisfies

∥S ε1(t − τ)U(τ)∥NV ≤ J(2E(τ))e−ω(t−τ) → 0 (τ→ −∞).

Proof. Multiplying (4.11) by u1 and ∂
∂t u1 respectively, and repeating the reasonings as shown as in

Lemma 4.9, in which β = 0 and fε = 0, we can derive the conclusion finally. The parameter ω is
dependent on ε and the increasing function J(∗) is different from the one in Lemma 4.9. Despite all
this, these parameters can be unified in same representation, and the concrete details are omitted here.

Lemma 4.11. Let U(τ) ∈ Dε0(τ), then for any t ∈ R, there exists Cε(t) > 0 such that the solution
S ε2(t, τ)U(τ) to the system (4.12) satisfies

∥S ε2(t, τ)U(τ)∥NW ≤ Cε(t).

Proof. Multiplying (4.12) by Au2, we have

1
2

d
dt

(∥u2∥
2 + α|Au2|

2) +
∫ ∞

0
µ(s)Aη2(s)Au2(t)ds + β∥u2∥

2 + b(u, u2, Au2) = (PL fε − βu1, Au2), (4.13)

from the existence of pullback absorbing set, Lemma 4.10, the interpolation inequality and Young
inequality, we have

1
2

d
dt

(∥u2∥
2 + α|Au2|

2 + ∥η2∥
2
MW

) +
1
2

∫ ∞

0
µ(s)

d
ds
|Aη2|

2ds + β∥u2∥
2

≤ |( fε, Au2)| + |(βu1, Au2)| + ∥u∥L6∥∇u2∥L3 |Au2|

≤
νε

4
|Au2|

2 +C∥u∥∥u2∥
1/2|Au2|

1/2|Au2| +C| fε|2

≤
νε

2
|Au2|

2 +C| fε|2 +C. (4.14)

Multiplying (4.12) by A∂tu2, we have

∥∂tu2∥
2 + α|A∂tu2|

2 + ((η2, ∂tu2))MW +
1
2
β

d
dt
∥u2∥

2 + b(u, u2, ∂tu2) = (PL fε − βu1, A∂tu2). (4.15)

By the existence of pullback absorbing set, Lemma 4.10 and Young inequality, one has
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β
d
dt
∥u2∥

2 + 2∥∂tu2∥
2 + 2α|A∂tu2|

2

≤ 2|((η2, ∂tu2))MW | + 2|(PL fε − βu1, A∂tu2)| + 2|b(u, u2, ∂tu2)|
≤ 2|((η2, ∂tu2))MW | + 2|(PL fε − βu1, A∂tu2)| +C|Au2||A∂tu2|

≤ α|A∂tu2|
2 +C∥η2∥

2
MW
+C|Au2|

2 +C| fε|2. (4.16)

To estimate the term
∫ ∞

0
µ(s) d

ds |Aη2|
2ds in (4.14), we set

Φ2(t) =
−6
κ

∫ ∞

0
µ̃(s)(Aη2(s), Au2(t))ds,

and differentiating in t leads to

d
dt
Φ2(t) +

6
κ

∫ ∞

0
µ̃(s)(Au2(t), Au2(t))ds

≤ −
6
κ

∫ ∞

0
µ̃(s)(−A∂sη2, Au2(t))ds −

6
κ

∫ ∞

0
µ̃(s)(Aη2(s), A∂tu2(t))ds, (4.17)

where

6
κ

∫ ∞

0
µ̃(s)(Au2(t), Au2(t))ds ≥

6
κ

∫ ∞

s̃
µ̃(s)ds · |Au2(t)|2, (4.18)

and

−
6
κ

∫ ∞

0
µ̃(s)(−A∂sη2, Au2(t))ds = −

6
κ

∫ ∞

s̃
µ′(s)(Aη2, Au2(t))ds

≤
6
κ

∫ ∞

s̃
−µ′(s)|Aη2||Au2(t)|ds ≤

6
κ

( ∫ ∞

s̃
−µ′(s)|Aη2|

2ds
)1/2( ∫ ∞

s̃
−µ′(s)|Au2(t)|2ds

)1/2
≤

6
κ

( ∫ ∞

s̃
µ(s)

d
ds
|Aη2|

2ds
)1/2(

2µ(s̃)
)1/2
|Au2(t)|

≤ |Au2(t)|2 +
18µ(s̃)
κ2

∫ ∞

s̃
µ(s)

d
ds
|Aη2|

2ds, (4.19)

and

−
6
κ

∫ ∞

0
µ̃(s)(Aη2(s), A∂tu2(t))ds ≤

6
κ

∫ ∞

0
µ(s)|Aη2(s)||A∂tu2(t)|ds

≤ αε|A∂tu2(t)|2 +
9
ακ2ε
∥η∥2MW

. (4.20)

Also, from the fact that µ′(s) + δµ(s) ≤ 0, we have∫ ∞

0
µ(s)

d
ds
|Aη2|

2ds ≥
∫ ∞

0
δµ(s)|Aη2|

2ds = δ∥η2∥
2
MW
. (4.21)
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Thus

d
dt
Φ2(t) + 2|Au2|

2 ≤
18µ(s̃)
κ2

∫ ∞

0
µ(s)

d
ds
|Aη2|

2ds +
9
ακε
∥η2∥

2
MW
+ αε|A∂tu2|

2. (4.22)

We use the technique in [18] and set

zε(t) = E2(t) + νεΦ2(t) + ε2Ψ2(t),

where
E2(t) =

1
2

(∥u2∥
2 + α|Au2|

2 + ∥η2∥
2
MW

), Ψ2(t) = β∥u∥2.

For sufficient small enough ε, it leads to

E2(t) ≤ 2zε(t) ≤ 2(E2(t) + 1),

and there holds

d
dt

zε(t) + νεzε(t) ≤ C +C| fε|2, (4.23)

it follows from the Gronwall lemma that

E2(t) ≤ Ce−νε(t−τ)E2(τ) +Cε
∫ t

τ

eνε(s−t)| f2(s, x)|2ds +C| f1|
2 +C

≤ Cεe−νεt
∫ t

τ

eνε0 s| f2(s, x)|2ds +C| f1|
2 +C, (4.24)

which means the conclusion holds.

Above all, Lemmas 4.10, 4.11 and 4.8 lead to

Lemma 4.12. Let U(τ) ∈ NV , then the process S ε(t, τ) : NV → NV generated by the system (3.2) is
D− κ-pullback contracting in NV .

Consequently, from Theorem 4.7, we can finish the proof of Theorem 3.3.

5. Robustness

5.1. Theories on robustness

By the definition of upper semi-continuity, the following lemmas can be used to obtain the
robustness of pullback attractors for evolutionary systems.

Lemma 5.1. ( [20] ) Let ε ∈ (0, ε0], {S ε(t, τ)} is the process of evolutionary system with
non-autonomous term (depending on ε), which is obtained by perturbing the semigroup S 0(τ) of
system without ε, and, for any t ∈ R, there also hold that

(i) S ε(t, τ) has the pullback attractorsAε(t), andA0 is the global attractor for S 0(τ).
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(ii) For any τ ∈ R+ and any u ∈ X, there holds uniformly that

lim
ε→0

dX(S ε(t, t − τ)u, S 0(τ)u) = 0.

(iii) There exists a compact subset G ⊂ X such that

lim
ε→0

distX(Aε(t),G) = 0.

Then, for any t ∈ R, there holds
lim
ε→0

distX(Aε,A0) = 0.

Lemma 5.2. ( [21] ) For any t ∈ R, τ ∈ R+, and ε ∈ (0, ε0], D̂ε0(t) = {Dε0(t) : t ∈ R} is the pullback
absorbing set for S ε(t, τ), and Ĉε0(t) = {Cε0(t) : t ∈ R} is a family of compact subsets in X. Assume that
S ε(·, ·) = S ε1(·, ·) + S ε2(·, ·), and there hold

(i) For any ut−τ ∈ Dε0(t − τ),

∥S ε1(t, t − τ)ut−τ∥X ≤ Φ(t, τ)→ 0 (τ→ ∞).

(ii) For any T ≥ τ, ∪0≤τ≤T S ε2(t, t − τ)Dε0(t − τ) is bounded, and there exists a constant TDε0(t),
independent of ε, such that

S ε2(t, t − τ)Dε0(t − τ) ⊂ Cε0(t), ∀ τ > TDε0(t).

(iii) There is a compact subset G ⊂ X such that

lim
ε→0

distX(Cε0(t),G) = 0.

Then, the process S ε(t, τ) has the pullback attractorsAε(t), and

lim
ε→0

distX(Aε,G) = 0.

5.2. Proof of Theorem 3.4

We give the following procedure to verify Theorem 3.4.

Lemma 5.3. Let (uε, ηε) = S ε(t, τ)U(τ) be the solution to system (3.2), and (u, η) = S 0(t − τ)U(τ) is
the solution to system (3.4), then, for any bounded subset B ⊂ NV , there holds

lim
ε→0

sup
U(τ)∈B

dNV (S ε(t, τ)U(τ), S 0(t − τ)U(τ)) = 0.

Proof. We know{
∂
∂t (u

ε + αAuε) +
∫ ∞

0
µ(s)Aηε(s)ds + B(uε, uε) + βuε = PL fε(t, x), (t, x) ∈ Ωτ,

∂
∂tη
ε = Tηε + uε,

(5.1)
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and {
∂
∂t (u + αAu) +

∫ ∞
0
µ(s)Aη(s)ds + B(u, u) + βu = PL f1(x), (t, x) ∈ Ωτ,

∂
∂tη = Tη + u.

(5.2)

Let wε = uε − u and ξε = ηε − η, we can derive

∂

∂t
(wε + αAwε) +

∫ ∞

0
µ(s)Aξε(s)ds + B(uε,wε) + B(wε, u) + βwε = εPL f2(t, x), (5.3)

and multiplying it by wε leads to

1
2

d
dt
∥wε∥2α +

∫ ∞

0
µ(s)(Aξε(s),wε(t))ds + b(wε, u,wε) + β|wε|2 = ε(PL f2(t, x),wε), (5.4)

it follows that
1
2

d
dt
∥wε∥2α +

∫ ∞

0
µ(s)((ξε(s),wε))ds ≤ |b(wε, u,wε)| + ε|( f2(t, x),wε)|. (5.5)

Integrating (5.5) over [τ, t], from Lemma 2.2 we derive that

∥wε(t)∥2α + ∥ξ
ε(t − s)∥2MV

≤ ∥wε(τ)∥2α + ∥ξ
ε(τ − s)∥2MV

+ 2
∫ t

τ

|b(wε, u,wε)|ds + 2ε
∫ t

τ

|( f2(t, x),wε)|ds

≤ ∥(wε, ξε)|τ∥2NV
+C
∫ t

τ

∥u∥∥wε∥2ds + 2ε
∫ t

τ

|( f2(t, x),wε)|ds

≤ ∥(wε, ξε)|τ∥2NV
+ ε2
∫ t

τ

| f2|
2ds +C

∫ t

τ

∥wε∥2ds, (5.6)

that is

∥(wε, ξε)|t∥2NV
≤ ∥(wε, ξε)|τ∥2NV

+ ε2
∫ t

τ

| f2|
2ds +C

∫ t

τ

∥(wε, ξε)|s∥2NV
ds, (5.7)

and the Gronwall inequality leads to

∥(wε, ξε)|t∥2NV
≤ C(∥(wε, ξε)|τ∥2NV

+ ε2
∫ t

τ

| f2|
2ds)→ 0 (ε→ 0), (5.8)

which means that the conclusion is finished.

Proof of Theorem 3.4. From (4.24) and the fact that W ↪→ V is compact, we know that there exists
a compact subset G ⊂ NV such that

lim
ε→0

distX(Cε0(t),G) = 0. (5.9)

Combining Lemma 4.10, Lemma 5.2 and (5.9), we have

lim
ε→0

distX(Aε,G) = 0.

In addition, the confirmation of condition (ii) in Lemma 5.1 is finished from Lemma 5.3, and we have

lim
ε→0

distX(Aε,A0) = 0.
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